

FITZGERALD BIOSPHERE REVIEW

The state of knowledge of the Fitzgerald Biosphere

FITZGERALD
BIOSPHERE GROUP

FITZGERALD BIOSPHERE REVIEW

The state of knowledge of the Fitzgerald Biosphere

Paula Deegan

2006

DISCLAIMER

While the author has executed every care to present accurate data throughout the content of this report, no responsibility is implied or accepted for inaccuracies which may occur.

Recommended citation:

Deegan P 2006 *Fitzgerald Biosphere review: the state of knowledge of the Fitzgerald Biosphere*. Report prepared for the Friends of the Fitzgerald River National Park and the Fitzgerald Biosphere Group.

TABLE OF CONTENTS

Foreword and Acknowledgements

1. INTRODUCTION.....	1
1.1 The Fitzgerald Biological Review Project	2
1.2 About this report.....	4
1.3 Future research priorities.....	5
1.4 The Fitzgerald Biosphere Collection	5
2. BIOSPHERE RESERVES.....	7
2.1 The Fitzgerald River Biosphere Reserve	7
3. CLIMATE.....	11
3.1 Climatic history	11
3.2 Summary	12
3.3 Climate change	13
4. GEOLOGY	17
4.1 Mapping	17
4.2 General geology and regional reviews.....	17
4.3 Detailed geological studies.....	19
4.4 Other	19
5. LANDFORMS	20
6. SOILS	21
6.1 Soil Descriptions and Mapping	21
6.2 Soil interactions	21
7. HYDROGEOLOGY.....	27
8. RIVERS AND WETLANDS.....	27
8.1 Wetlands.....	28
8.2 Rivers	29
8.3 Hydrology, catchments and surface water management.....	31
9. NEAR SHORE MARINE ENVIRONMENT (INCLUDING ESTUARIES)	31
9.1 Estuaries	32
10. VEGETATION & FLORA.....	33
10.1 Historical	33
10.2 Significance of the area.....	33
10.3 Botanical surveys and reviews	34
10.4 Fitzgerald River National Park	38
10.5 Ravensthorpe Range	38
10.6 Other areas.....	39
10.7 Other ecological studies	39
10.8 Economic uses of native plants	39
10.9 Environmental degradation	39
10.10 Remnant vegetation.....	40
10.11 Management plans	40
10.12 Aquatic and marine vegetation and flora	40

11. FAUNA.....	43
11.1 Terrestrial invertebrates	44
11.2 Terrestrial mammals	45
11.3 Birds	47
11.4 Introduced species.....	50
11.5 Aquatic fauna.....	50
11.6 Marine fauna.....	51
12. PLANT DISEASES.....	52
13. FIRE.....	55
REFERENCES.....	57

TABLES

Table 1: Mean, minimum and maximum annual rainfalls.....	12
Table 2: Bureau of Meteorology rainfall station metadata listing	14
Table 3: Bureau of Meteorology maximum temperature station metadata listing	16
Table 4: Simplified Description of Soil Landscape Zones.....	22
Table 5: Landforms, Soils and Vegetation of the Fitzgerald River National Park	24

MAPS

Map 1: Localities.....	6
Map2: Fitzgerald Biosphere.....	9
Map 3: Land tenure	10
Map 4: Simplified geology	18
Map 5: Soil landscape zones.....	23
Map 6: Department of Environment surface water monitoring sites	30
Map 7: Vegetation associations	35
Map 8: Extent of Newbey vegetation mapping	36
Map 9: Remnant vegetation extent.....	42
Map 10: Fauna monitoring sites.....	49
Map 11: Known occurrences of <i>Phytophthora cinnamomi</i>	54

Foreword

This report was prepared to summarise the available information on the nature of the Fitzgerald Biosphere area. It is a result of a project initiated by the Friends of the Fitzgerald River National Park, administered by the Fitzgerald Biosphere Group and funded by Lotterywest. The project also produced a searchable bibliographic database in Filemaker format on CD and intended to be made available through the websites of the Fitzgerald Biosphere Group and the GondwanaLink partnership.

It was originally intended that this report would provide a summarised overview of all research findings for the Fitzgerald Biosphere area, together with recommendations for future research and monitoring. The number of references (nearly 400) and the range of topics, detail and accessibility of some of those references made summarising all the available information a very arduous task and beyond the capacity of the project's resources. Making recommendations for research and management, while still considered a priority, was not possible without a comprehensive and participative process that allowed the objectives for future management of the Biosphere to be determined by all stakeholders. The project has, however, provided a basis for that process to now occur with a clearer understanding of the available knowledge for this special part of the world.

Many of the references unearthed during the course of the study were difficult to find and, wherever possible, copies have been made and are now housed at the office of GondwanaLink, 146 Aberdeen Street, Albany. This will assist researchers, students and others interested in furthering their own knowledge of the Fitzgerald, or to follow up on information in this report.

The report and bibliography are as complete as the project resources allowed, but there are undoubtedly other references relevant to the area that are yet to be uncovered. Additions to the bibliography are encouraged.

*Paula Deegan
Project Officer
2006*

Acknowledgements

Many people assisted in the completion of this project. Special thanks are due to the members of the Friends of the Fitzgerald River National Park, especially Angela Sanders, Andrew Chapman, Gil Craig and Nathan McQuoid; Ross and Rhonda Williams, Joanna Tomlinson and Katrina Sait from the Fitzgerald Biosphere Group; Keith Bradby and Amanda Keesing from GondwanaLink; Sarah Comer and Lisa Wright from the Department of Conservation and Land Management; Margaret Triffit from the WA Museum Library; Ron Wooller and his colleagues at Murdoch University; David Jan from the South Coast Regional Initiative Planning Team (SCRIPT), particularly for assistance with the database development; and Faye Overheu from Lotterywest.

1. INTRODUCTION

The Fitzgerald Biosphere¹ is situated on the central south coast of Western Australia. It has a land area of around 1.4 million hectares and includes around 250 km of coastline (Map 1). It consists of all of the Shire of Jerramungup, part of the Shire of Ravensthorpe west of the Rabbit Proof Fence, and the northern parts of the Fitzgerald and Gairdner River catchments that lie in the Shires of Kent and Lake Grace (RAP and SCRIPT 1997).

The region is characterised by a complex geology, including the ancient granite of the Yilgarn Craton, coastal granites of the Albany Fraser system, the quartzites of the Barren Ranges, the greenstone system of the Ravensthorpe Range, marine plains of spongolite overlain by laterite rock, and coastal dunes. Several south-flowing rivers incise the Yilgarn block and marine plains, and form estuaries that are normally only seasonally or infrequently open to the Southern Ocean.

The region has a rich floristic diversity that was noted soon after European exploration of the south coast began. Several maritime expeditions to the south coast in the late eighteenth and early nineteenth centuries included naturalists who made observations and collected specimens of plants and animals. Early botanical collectors, such as William Baxter in the 1820s, and James Drummond, who visited the Fitzgerald River area in the 1840s, began to identify a vast array of species, many endemic to the area.

Pastoralism began in the area around 1849, with John Hassell's settlement at Jerramungup ('Jaramongup'), followed soon after by John Wellstead at Bremer Bay and John Dunn at Cocanarup. The towns of Ravensthorpe, Hopetoun and Kundip were surveyed in 1901 after gold was discovered nearby.

Alienation and clearing of land for agriculture proceeded rapidly after the Second World War, and today a little over half of the land area has been alienated, with nearly 80% of that area cleared of native vegetation and under crops or pasture, with an increasing area under timber plantations.

The remaining uncleared land includes the Fitzgerald River National Park, considered by Chapman and Newbey (1995b) to be one of the most important reserves in Western Australia for its rich diversity of flora and because it provides refuge for several fauna species that have become rare or endangered because of the widespread loss of their former habitats. Other largely intact areas within the Biosphere include the Ravensthorpe Range, coastal and river corridors. There are a number of nature reserves including Corackerup and Peniup Nature Reserves on the western edge of the Biosphere, and timber reserves, such as Cocanarup.

While the significance of the Biosphere's natural values are being increasingly recognised, its biodiversity continues to be threatened by some agricultural practices, expansion of mining, fire, dieback, salinity, climate change, and pressure from coastal

¹ Section 2 discusses Biosphere Reserves and the use of the term "Fitzgerald Biosphere" in this report.

development and recreation. In response to these threats, there are also some ambitious and innovative actions taking place including the Gondwana Link project².

1.1 The Fitzgerald Biological Review Project

Throughout the 1960s and 1970s, there were contentious proposals to mine areas of the Fitzgerald River National Park for lignite and for manganese, and to release additional Vacant Crown Land in the North Fitzgerald area (since included in the National Park) for agriculture. Opposition to these proposals came from local people, scientists and some government departments but highlighted the lack of understanding and documentation of the Fitzgerald's significance for conservation. In 1978, the National Park area was nominated and listed as an International Biosphere.

In 1980, a meeting at the Department of Conservation and Environment in Perth proposed that the National Parks Authority should prepare a document to summarise the existing knowledge of the Fitzgerald River National Park and for “clarifying the reasoning behind the Park’s classification as an International Biosphere Reserve” (Muir, 1980). An additional reason for the document was to identify further research needed to assist in management of the Park.

The resulting document was prepared by Barry Muir and highlighted the dearth of biological data for the Park. Muir identified two main problems that contributed to this paucity of knowledge: the unavailability of data from research that had been undertaken, including vegetation and geological surveys; and the “almost total lack of knowledge of certain faunal groups” (Muir 1980).

Muir’s report also noted that, despite the land use controversies generating discussion about the “important” areas within the Park, no real attempt had been made to identify a basis for determining priority areas. The report therefore included work by Ken Newbey, who had been studying aspects of the soils, landforms and flora since the early 1960s, and who developed a series of hand drawn maps that attempted to rank areas systematically on criteria such as species richness, diversity and rarity.

Following the production of the report, the Fitzgerald River National Park Association received a funding grant from the WA Heritage Committee that allowed a two-year biological survey to be undertaken in 1985-1987 by Ken Newbey and Andrew Chapman (Chapman and Newbey, 1987a, 1987b, 199b). Other studies into the biology of the Park have since been conducted but, as Muir observed in 1980, many research studies are conducted in relative isolation and the findings are sometimes

² Gondwana Link is a landscape scale vision involving individuals and groups working together to achieve reconnected country across south-western Australia in which entire ecosystems, and the ecological processes that underpin them, are restored and maintained. The Gondwana Link groups are doing this by restoring ecological connectivity across south-western Australia, from the woodlands of the drier interior to the tall wet forests in the far south-west corner; protecting and re-planting bushland over more than 1,000 kilometres; and building a living link that reaches eastward across the continent. More information, including how to participate or support the project, can be found at www.gondwanalink.org

difficult to access. There has been no further attempt made since 1980 to collate the various studies in the area, or to assess their implications for management.

The Fitzgerald River National Park Association later became the Friends of the Fitzgerald River National Park (FFRNP) and continued trying to improve the state of knowledge of the Park. Recognising that the management plan for the National Park and the Department of Conservation and Land Management's South Coast Regional Plan is due for review, in 2004 the FFRNP joined with the Fitzgerald Biosphere Group Inc and obtained funds through Lotterywest to review the physical and biological knowledge of the wider Biosphere area.

The aims of this project were to:

1. document the biological studies, both terrestrial and marine, that have occurred in the Fitzgerald Biosphere since the review by Muir (1980);
2. digitally map the locality of research sites;
3. identify key outcomes of research in the Fitzgerald Biosphere and present the information to the public; and
4. document future research needs.

It was intended that the review would form the basis for identifying the research required to improve understanding of ecological processes in the Biosphere, and the future monitoring and evaluation requirements.

Most importantly, the review would produce a bibliographic database that would help to make information on the Biosphere more widely accessible to students, researchers, land managers and planners, and the local community. In turn, it was intended that this may encourage further research to be undertaken to help conserve the area's natural values in the long term. The database, which has been produced on CD and is also available through the Gondwana Link website (www.gondwanalink.org) is intended to be updated regularly, and contribution of additional reference information is invited.

Information sources and accessibility

A fairly broad definition of "scientific research" was used in the project, and any information relevant to the physical and biological nature of the Biosphere has been included. This included published and unpublished sources.

Information was sourced through several means:

- personal contacts with people known to have worked within the Biosphere or likely to have knowledge of studies undertaken;
- requests to Government departments both within the region and in Perth for access to files and reports;
- searches of the WA Museum, Department of Conservation and Land Management, University of WA, and Murdoch, Edith Cowan and Curtin University libraries; and
- internet searches.

Responses to requests for information were varied, and the limitations on time and resources for the project meant that some potential sources of information were

unable to be fully explored. Publication of the bibliographic database and report at this time may prompt additional responses which can be incorporated into future revisions.

1.2 About this report

This report outlines the state of knowledge by referring to studies, surveys and other work undertaken, and provides a brief overview of the available information. It does not provide detailed reviews or a full synthesis of all information available. The report is intended to be accessible to a wide audience – scientists, land managers, students and any one with an interest in this area of the south coast – and, by providing an extensive reference list and the bibliographic database, to encourage further exploration of the wonders of the Fitzgerald Biosphere.

What the report does not include:

Taxonomic studies.

A region as rich in species of flora and fauna, and with such a high representation of endemics and hybrids as the Fitzgerald Biosphere, inevitably attracts considerable attention from plant and animal taxonomists. Many taxa have been collected in the area and are still awaiting description. The resource limitations in the current project precluded taxonomic studies being included here, although some examples are shown as reminders of these additional sources of knowledge. Instead, some appropriate website links to floristic and faunal databases that allow searches to be made of taxonomic data on a geographic basis have been included.

Indigenous knowledge.

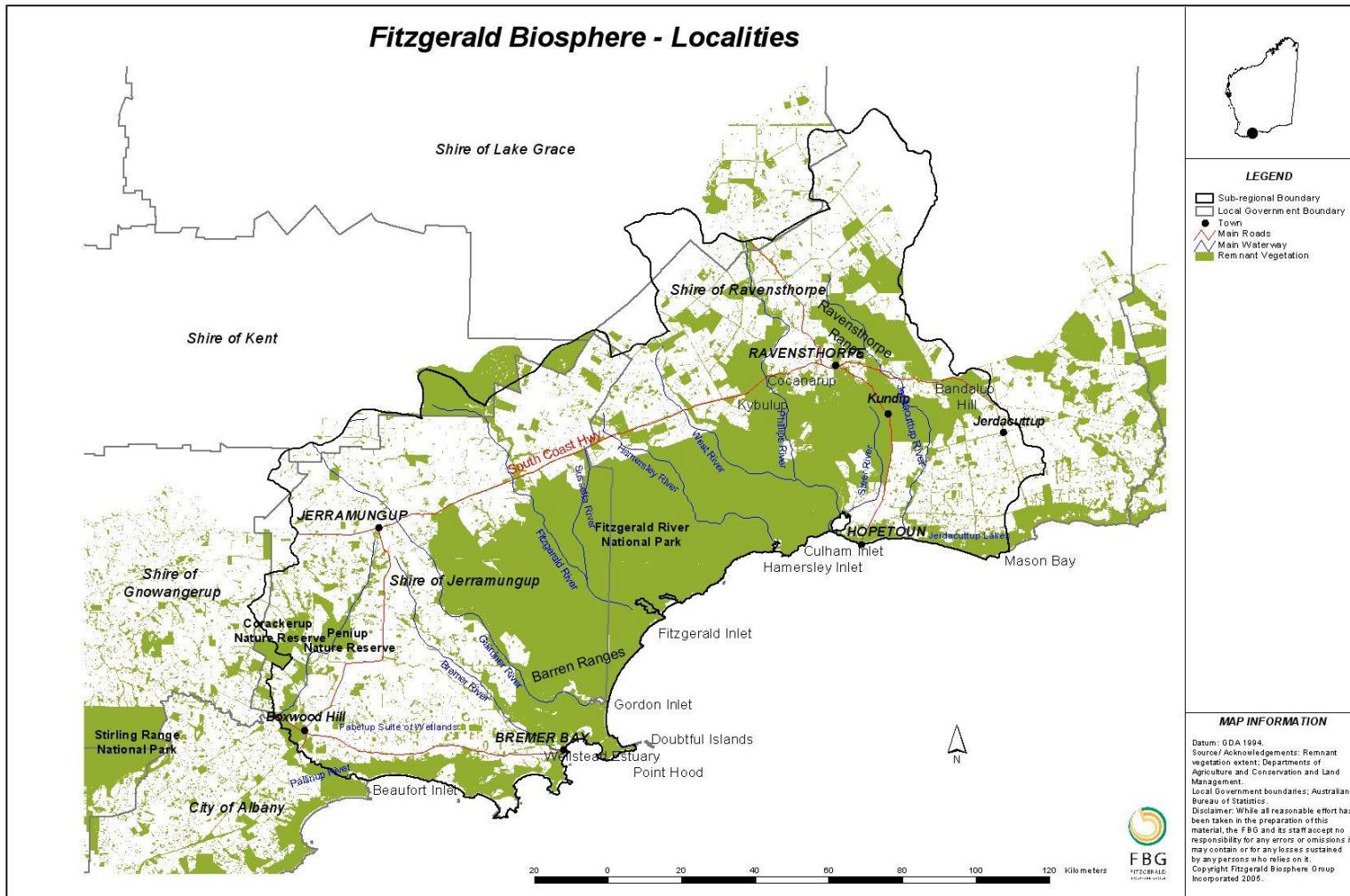
There were many thousands of years of human life in this environment before European settlement, and the indigenous peoples of the south-west of WA are probably among the most dispossessed and displaced people in Australian history. Despite this, the Noongar culture has survived and includes knowledge of the natural environment that developed through that long and close dependence of people on their land. Any sharing of that knowledge through documentation or other means is the right of the Noongar people themselves. This project and report therefore do not attempt to discuss Noongar culture or history, other than to acknowledge that a full picture of the Biosphere's natural history is incomplete without Noongar participation.

History of European exploration, land settlement and agricultural development.

The natural environment of the Fitzgerald Biosphere has been subject to huge changes since European settlement began in the area and some of the papers included in this review relate to particular impacts of clearing, changed fire management and the introduction of alien species. To understand these changes, and the changing perceptions of the values of the area, requires a more thorough review of the historical, political and social events of the past 200 years: from first observations by early European explorers; the land release period of the 1950s and 1960s; the efforts to secure the Fitzgerald

River National Park from mining and extend its area; the heart-breaking events of the 1980s when land degradation particularly through wind erosion was devastating for many landowners; the subsequent growth of the landcare movement within the rural communities of this region; and more recently the impetus for conservation through investment of private funding, many hours of volunteer efforts, and an emphasis on establishing environmentally-benign commercial industries using native plant products.

There are several documents that cover parts of this history. The history of the Fitzgerald River National Park has been well documented by Keith Bradby (1989) in “Park in Perspective”, and the growth of the Fitzgerald Biosphere concept in Thomas (1989), Switzer (1988) and the Fitzgerald Biosphere Project (1989).


The documentation of agricultural research and studies relevant to the Fitzgerald area is also not within the scope of this report. The Fitzgerald Biosphere Group Inc and its eastern neighbour, the Ravensthorpe Agricultural Initiative Network (RAIN), continue to work on developing and implementing better farming systems that treat the land and its people more kindly.

1.3 Future research priorities

The project included in its original aims the documentation of future research needs and some assessment of their priorities. It will become apparent from reading this report that there are many areas in which research and other knowledge is sparse. However, identifying priorities for research is a more complex task than could have been undertaken with the resources available to the project. Even identifying gaps in knowledge is a large task and would evoke different responses from, for example, scientists, land managers or other interested individuals. It is hoped that the report will provide some stimulus for the different interests to identify what knowledge is available to them and can therefore perhaps be used to assist in better managing the Biosphere area now and provoke some discussion on what additional studies need to be encouraged and supported in future.

1.4 The Fitzgerald Biosphere Collection

Gathering the wide range of papers and reports that comprise the reference lists for this report was a time-consuming and sometimes frustrating process. Some papers, while included in the reference list, have not been located. To encourage wider use of the material, a physical collection of all the papers that were located has been assembled and will be housed in the Gondwana Link office in Albany.

Map 1

2. BIOSPHERE RESERVES

The concept of biosphere reserves was initiated under UNESCO³'s Man and the Biosphere (MAB) Program which began in 1970. One of the MAB's main objectives was to balance the sometimes conflicting goals of conserving biological diversity, promoting economic development and maintaining associated cultural values. The world network of Biosphere reserves are sites where this objective is intended to be tested, refined, demonstrated and implemented.

Each biosphere reserve is intended to fulfil three basic functions:

- a conservation function - to contribute to the conservation of landscapes, ecosystems, species and genetic variation;
- a development function - to foster economic and human development which is socio-culturally and ecologically sustainable;
- a logistic function - to provide support for research, monitoring, education and information exchange related to local, national and global issues of conservation and development.

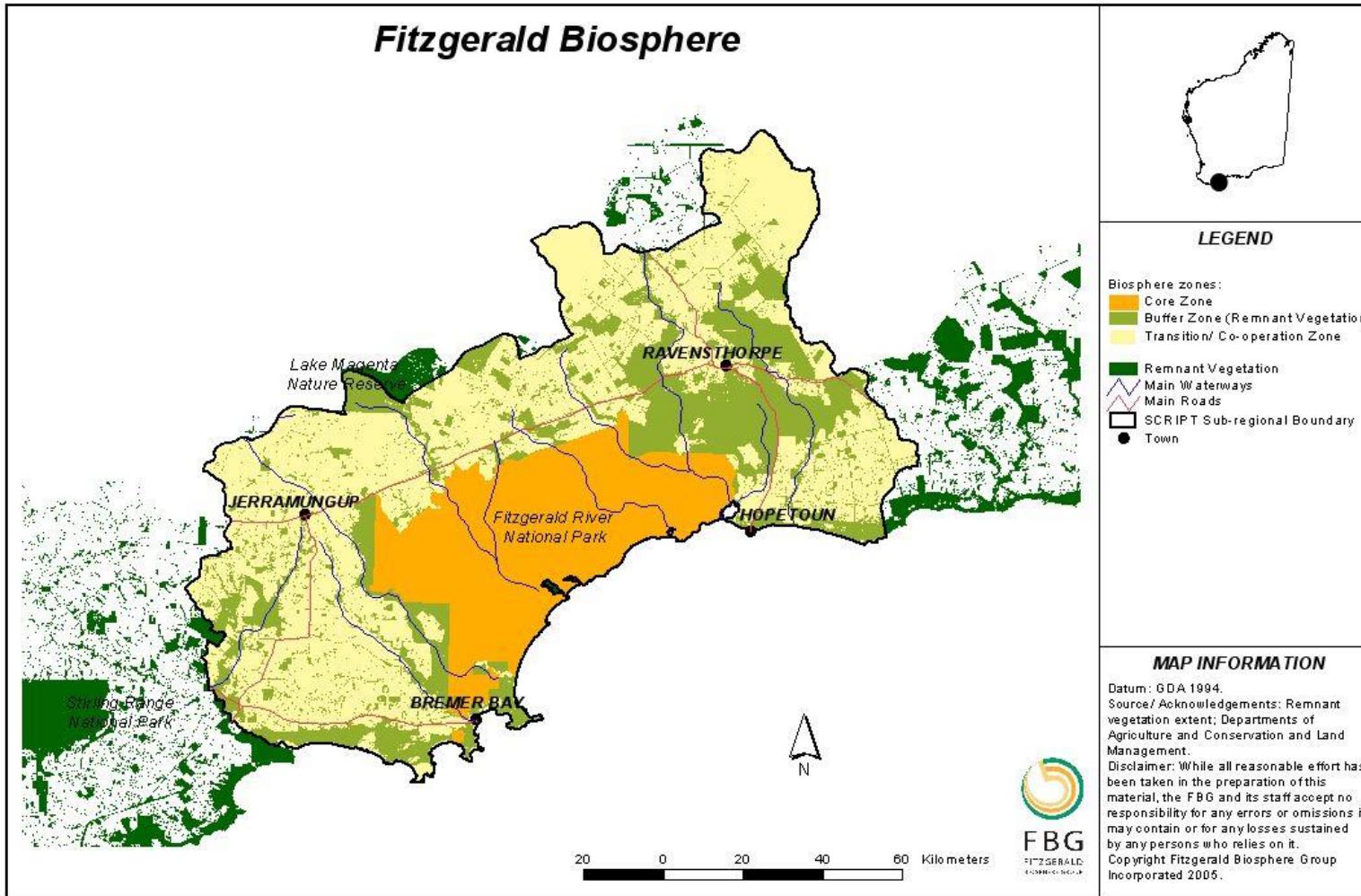
Reflecting these three functions, biosphere reserves are organized into three interrelated zones, known as the core area, the buffer zone and the transition area. Only the core area requires formal legal protection. A number of biosphere reserves simultaneously encompass areas protected under other systems (such as national parks or nature reserves) and other internationally recognized sites (such as World Heritage or Ramsar wetland sites).

Biosphere Reserves are not covered by an international convention but at the International Conference on Biosphere Reserves, held in Seville (Spain) in 1995, a statutory framework for their management was developed. Also arising from this conference was the "Seville Strategy", which identified key directions and "implementation indicators" for biosphere reserves to fulfil properly their three functions.

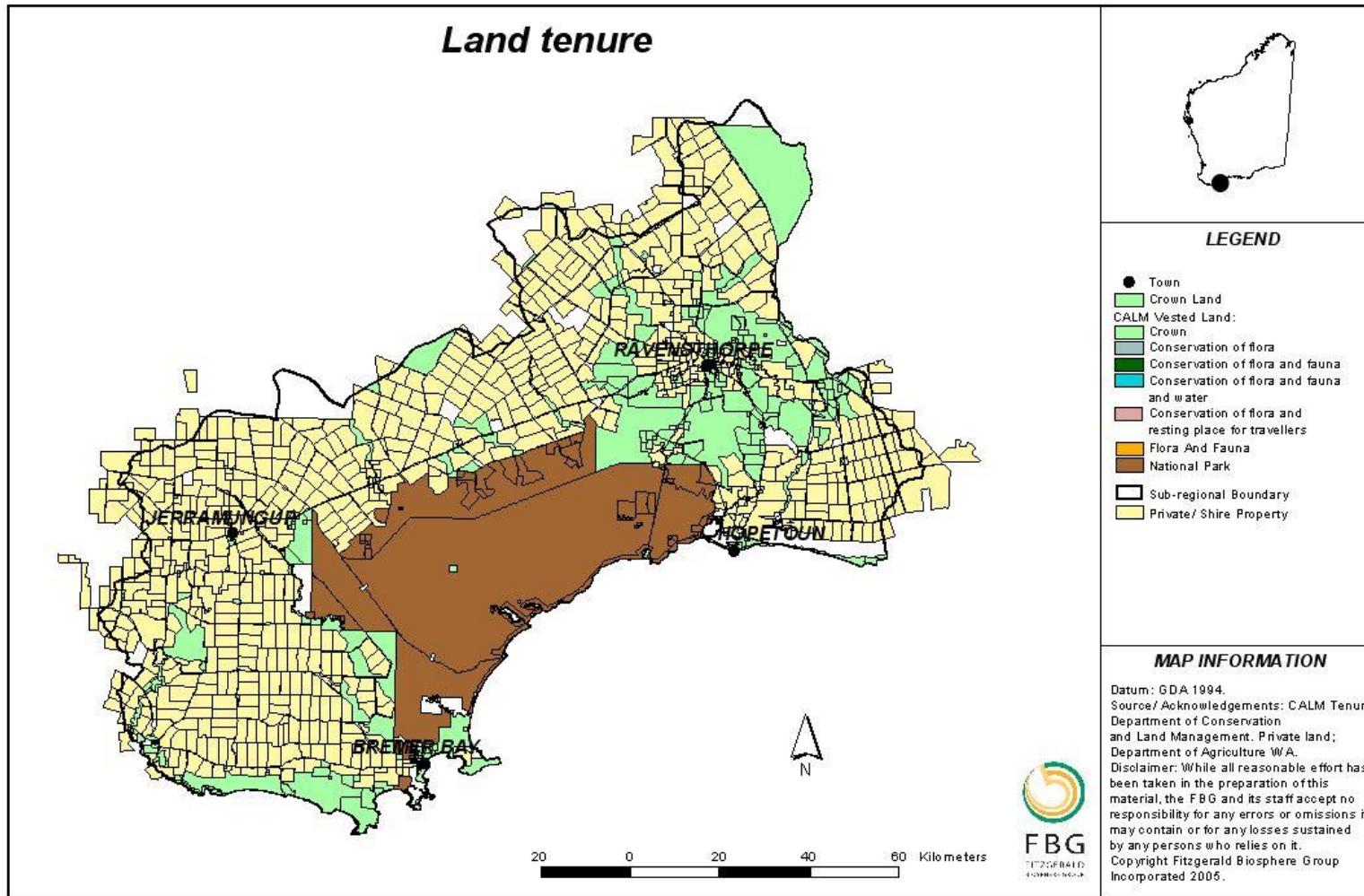
2.1 The Fitzgerald River Biosphere Reserve

In 1978, the area that was then included within the Fitzgerald River National Park was accepted as a Biosphere Reserve after nomination by the WA Government, primarily because of its outstanding floristic diversity. Only the area gazetted as National Park at that time was included in the nominated area, so the three zones were not identified at that time. It was not until the mid 1980s that members of the community living in the area began to question the Biosphere designation and subsequently initiated the Fitzgerald Biosphere Project (Bradby 1989). Since then, the other zones have been informally recognised by many people living within the area, particularly the transition zone, or the "zone of cooperation" which is where the social and economic activities of the region are most evident (see Map 2).

³ UNESCO is the United Nations Educational, Scientific and Cultural Organisation


Although the official UNESCO boundary has never been revised, the term “Fitzgerald Biosphere” has therefore generally come to be accepted as applying to the larger area that includes the Shire of Jerramungup and the western part of the Shire of Ravensthorpe. This wider Fitzgerald Biosphere area is recognised as a subregion of the South Coast Natural Resource Management Region and is a convenient planning and management unit for several government departments and community organisations although, as with all “lines on maps”, some anomalies inevitably arise. In this report therefore, the term “Fitzgerald Biosphere” is used to refer to that wider area that includes the zones where human activities are dominant, including the near-shore marine environments.

More information on Biosphere reserves and the Seville Strategy can be found on


<https://www.fitzgeraldbiosphere.org/> the UNESCO MAB website

<https://www.unesco.org/en/mab>

Fitzgerald Biosphere

Map 2

Map 3

3. CLIMATE

Many of the studies into physical and biological aspects of the Biosphere include some discussion of the area's climate. Only those providing the most detailed information, or which address specific climatic influences on other physical or biological parameters, are included in this section.

Rainfall, temperature and other statistics can be obtained from the Bureau of Meteorology website <https://www.bom.gov.au/resources/data-services>. This also provides some trend information, as well as details of sites for which long term records are available. Long term rainfall and maximum temperature sites within the Fitzgerald Biosphere are listed in Tables 2 and 3.

Current and historical weather data is also available through the Department of Agriculture website, including live data from the research station site north of Jerramungup (<http://agspsrv34.agric.wa.gov.au/climate/livedata/jewebpag.htm>).

The most thorough discussions of the climate of the Biosphere area are included in Chapman and Newbey (1995b) for the Fitzgerald River National Park, and by Overheu (2002, 2004) for the North Jerramungup – Fitzgerald and Bremer – Gairdner catchments. McCaw and Hanstrum (2003) discuss climate and weather factors of the Mediterranean south-west in relation to fire behaviour, and McCaw *et al* (1992) provides specific discussion of the weather events associated with fire behaviour during the December 1989 wildfires in the Fitzgerald River National Park. Some aspects of the cyclical patterns of rainfall over periods of decades are discussed by Clarke and Phillips (1953), McCaw and Hanstrum (2003) and Smith (1977).

Milewski (1984) also included a detailed comparison of the climate of the Barren Ranges with that of the Caledon Coast in South Africa and drew relationships between the height of vegetation and the amount of effective deep-wetting rainfall. Wooller *et al* (1998) looked at capture rates of honey possums in the Fitzgerald River National Park in relation to rainfall in the previous season and related this to nectar availability.

Esau and Lyons (2002) and Lyons (2002) discuss the effect of the changes in land surface characteristics when agriculture replaces native vegetation on cloud formation and rainfall, using the sharp demarcation between land uses at the Rabbit Proof Fence as a study area.

3.1 Climatic history

The long term (ie geological periods) climatic history of the region is important to understanding the present distributions and relationships of species and communities to their physical settings. Hopper *et al* (1996) provide a comprehensive discussion of the development of the distinctive species of the south-west, while some other papers that make reference to the influence of major climate changes on the development of the south coast's environment include Clarke and Phillips (1953), Hodgkin and Lenanton (1981), Hos (1975) and Smith (1977).

Current (or anticipated) climate change has not been studied specifically within the area, although there are numerous papers on climate change observations or modelled predictions at a state, national or global scale that are relevant to the Biosphere, and recognition of potential implications of climate change for the maintenance of species and communities is increasing. Some of the modelled predictions can be accessed through the websites of the Bureau of Meteorology (<http://www.bom.gov.au/climate/change/>); the Australian Greenhouse Office (<http://www.greenhouse.gov.au/science/guide/>); CSIRO's Climate Change Research Program (<http://www.dar.csiro.au/div/CCRP/default.htm>); the Indian Ocean Climate Initiative (<http://www.ioci.org.au/index.html>) or the Intergovernmental Panel on Climate Change (<http://www.unep.ch/ipcc>).

3.2 Summary

The region's climate is described as Mediterranean or Dry Mediterranean, which is characterised by cool, wet winters and dry hot summers.

The annual average rainfall varies from more than 600mm near Bremer Bay to less than 300mm inland. Rainfall decreases with distance inland and decreases from west to east. Although a winter rainfall area, some of the most significant rainfall events can occur in the summer months as the result of thunderstorms, sometimes associated with deteriorating tropical cyclones. The unpredictability of these events, and the effect of the El Niño – Southern Oscillation on early winter frontal rainfall, means that rainfall variability can be high, both from year to year and across the region within years. Some of this variability can be seen in Table 1 showing the wettest and driest years for some areas within the Biosphere.

Table 1: Mean, minimum and maximum annual rainfalls

Location	Mean (mm)	Minimum (year)	Maximum (year)
Bremer-Gairdner ¹	521	317 (1994)	732 (1971)
Upper Fitzgerald catchment ²	398	186 (1994)	529 (1992)
Lower Fitzgerald catchment ²	413	172 (1994)	573 (1971)
Ravensthorpe ³	424	234 (1940)	734 (1951)

1= From Overheu (2004); driest and wettest years based on records from 1957.

2= From Overheu (2002)

3= From Department of Environment (2003)

Temperatures range from average summer highs of 29°C and winter highs of 16°C, to average summer lows of 14°C and winter lows of 6°C. Frosts are rare near the coast but can occur in winter particularly inland.

Wind is an important environmental factor, with strong north-westerly winds experienced in winter associated with the passage of cold fronts, and northerly or easterly winds in summer associated with high pressure systems in the Great Australian Bight. A south-easterly sea breeze is experienced in most coastal areas in summer.

3.3 Climate change

While there will continue to be debate and uncertainty over the extent and causes of climate change and variability, there is ample evidence that changes have occurred in rainfall and temperatures in the south-west in the last few decades. The observed changes have been summarised by the Indian Ocean Climate Initiative (IOCI, 2002) as:

- a substantial decrease in winter rainfall in the south-west of WA since the mid-twentieth century;
- pronounced decrease in May-July rainfall, whereas late winter (August-October) rainfall has actually increased, although by a smaller amount;
- a sharp and sudden decrease of about 15-20% in winter rainfall in the mid-1970s;
- a gradual but substantial increase in day time and night time temperatures in the last 50 years, particularly in winter and autumn.

There has been substantial climate change before now, and an unknown aspect of the observed changes is how much they are due to natural variations and how much is due to accelerated change due to greenhouse gas effects, atmospheric pollution or global land use changes. Despite the uncertainties, there is a general consensus from researchers on the nature, if not the magnitude, of predicted future trends. These are for a continued rise in temperatures and a likely continued reduction in winter rainfall.

The implications of these trends for conservation of nature are considerable: even if the climatic variability were to be shown to be within previous ranges of variability, the fragmented nature of the landscape now limits the resilience of natural systems to adapt. In light of this, and the other anthropogenic changes to climate, the work by Lyons (2002) and Esau and Lyons (2002) demonstrating the reduction in cloud formation over agricultural land compared to that over native vegetation, raises questions over the future prospects for influencing both climate and biological resilience through landscape-scale revegetation projects.

Table 2: Bureau of Meteorology rainfall station metadata listing

This Table has been adapted from information obtained from the Bureau of Meteorology website listing of rainfall sites and is included as an indication of the temporal and spatial spread of rainfall information that may be available. Sites have been selected for inclusion in this table if they occur *in* or *near* the Biosphere. To obtain data from these sites, refer to the Bureau's services information at <http://www.bom.gov.au>

Site	Dist	Site_name	ID	Start	End	Lat	Long	Source	Height (m)
009557	09A	HOPETOUN		1901	..	-33.9497	120.1258	GPS	15.0
009654	09A	BREMER BAY		1885	..	-34.3986	119.3778	GPS	20.0
009663	09A	BEDFORD HARBOUR RPF1		1957	1979	-33.8167	120.5167		
009751	09A	BREMER BAY POST OFFICE		1960	1969	-34.4000	119.4000		
009764	09A	BEDFORD HARBOUR 1		1967	1970	-33.7500	120.6000		70.0
009790	09A	YARRAMIE		1970	1972	-34.3000	119.1667		
009794	09A	BEDFORD HARBOUR		1969	..	-33.8039	120.6375	GPS	90.0
009798	09A	JERDACUTTUP		1970	..	-33.8847	120.4222	GPS	40.0
009829	09A	TALLANGATTA		1972	..	-33.8911	120.3256	GPS	40.0
009835	09A	WAYJO PARK		1963	..	-34.4033	118.9689	GPS	80.0
009837	09A	WELLSTEAD		1973	..	-34.4647	118.6528	GPS	110.0
009853	09A	QUAALUP		1921	1946	-34.2500	119.5000		
009861	09A	BEAUFORT PLN		1961	1978	-34.3833	118.8167		150.0
009865	09A	WARRA JARRA		1979	..	-34.3997	118.8867	GPS	90.0
009961	09A	HOPETOUN NORTH	HPTN	1995	..	-33.9306	120.1283	GPS	26.0
009995	09A	LAKE SHASTER		2003	..	-33.8175	120.7039	GPS	90.0
010533	10A	COCANARUP		1898	1986	-33.6369	119.8853		250.0
010541	10A	NYERILUP		1907	..	-33.8594	118.8158		280.0
010572	10A	JAM VALE		1921	..	-34.2675	118.5064	GPS	190.0
010580	10A	KAYBALLUP		1914	1986	-33.7822	119.9436		200.0
010594	10A	LAKE MAGENTA		1928	1980	-33.3333	119.1686		300.0
010611	10A	MOUNT MADDEN		1932	..	-33.2761	119.7753	GPS	310.0
010615	10A	NEEDILUP		1936	1949	-33.9833	118.8000		
010633	10A	RAVENSTHORPE		1901	..	-33.5797	120.0461	GPS	232.0
010640	10A	JERRAMUNGUP LIGHTNING		1999	2000	-33.9503	118.9203	GPS	320.0
010672	10A	JERRAMUNGUP		1895	1976	-33.9167	118.9500		300.0
010674	10A	RPF 173 MILE		1905	1955	-33.4000	120.2000		

Site	Dist	Site_name	ID	Start	End	Lat	Long	Source	Height (m)
010683	10A	KUNDIP		1923	1950	-33.7000	120.2000		
010686	10A	MUNSLEY		1973	..	-33.8272	119.2483	GPS	280.0
010689	10A	JACUP DAM		1954	2000	-33.8272	119.2483		260.0
010690	10A	NUNKERI		1954	1999	-33.4808	119.9622		280.0
010693	10A	WOOGANUP HEIGHTS		1956	1996	-33.7661	119.5583		270.0
010697	10A	CARLINGUP		1955	1961	-33.5667	120.1833		
010707	10A	JERRAMUNGUP		1962	..	-33.9411	118.9200		320.0
010709	10A	BREMER BAY POST OFFICE		1960	1969	-34.4000	119.4000		
010710	10A	BEAUFORT PLAINS		1960	1977	-34.3817	118.8233		150.0
010729	10A	CHILLINUP		1905	..	-34.3439	118.6306	GPS	104.0
010768	10A	CONNELL		1913	1936	-33.9833	118.8000		
010778	10A	STRACHANLY		1922	1942	-33.6000	120.2000		
010792	10A	GAIRDNER		1963	..	-34.1692	118.9444	GPS	180.0
010796	10A	ELVERDTON		1964	1970	-33.6333	120.1333		262.0
010811	10A	NTH RAVENSTHORPE		1968	..	-33.1806	120.0883	GPS	340.0
010817	10A	BOX GLEN		1968	1976	-34.0000	118.9167		303.6
010819	10A	KATTAGANNA		1965	1982	-33.7344	119.100		400.0
010829	10A	MAGEDUP		1908	1912	-33.9167	118.5333		
010838	10A	MARNINGARUP		1934	1941	-34.1000	119.1667		
010840	10A	MAGENTA SOUTH		1930	1933	-33.5000	119.2167		
010849	10A	MYOORA		1970	..	-34.3131	118.8281	GPS	160.0
010852	10A	LOS NEGROS		1970	1972	-33.6833	119.4500		152.0
010869	10A	CARLINGUP		1972	..	-33.5942	120.1833	GPS	150.0
010870	10A	MAINNERUP		1972	..	-33.6914	119.6619	GPS	290.0
010877	10A	COOMPERTUP		1977	2002	-33.7139	119.5403	GPS	290.0
010878	10A	CHESALON		1966	..	-33.5381	119.6564	GPS	350.0
010880	10A	GOLDEN PARK		1975	..	-34.3131	118.9894	GPS	100.0
010890	10A	GNAMMA		1983	2004	-33.6467	120.4319	GPS	210.0
010895	10A	MONTE VISTA		1968	..	-33.3994	119.9344	GPS	310.0
010896	10A	YOOROOOGA		1984	..	-33.4331	120.1178	GPS	320.0
010902	10A	FITZGERALD		1989	..	-33.7781	119.5019	GPS	280.0
010905	10A	JACUP	JCUP	1993	..	-33.8878	119.1092	GPS	305.0

Table 3: Bureau of Meteorology maximum temperature station metadata listing

This Table has been adapted from information obtained from the Bureau of Meteorology website listing of maximum temperature sites and is included as an indication of the temporal and spatial spread of maximum temperature information that *may* be available. Sites have been selected for inclusion in this table if they occur *in* or *near* the Biosphere. To obtain data from these sites, refer to the Bureau's services information at <http://www.bom.gov.au>

Australian stations measuring air temperature		Produced: 05 May 2005					
Site	Name	Lat	Lon	Start	End	Years	%
9754	METTLER	-34.5961	118.5519		Nov 1966 Feb 1997	30.3	88
9764	BEDFORD HARBOUR 1	-33.7500	120.6000		Aug 1967 Feb 1970	2.3	80
9868	MUNGLINUP	-33.7078	120.8653		May 1970 Dec 1973	3.7	91
9961	HOPETOUN NORTH	-33.9306	120.1283		Jan 1996 Apr 2005	9.3	96
10622	ONGERUP	-33.9644	118.4889		Aug 1966 Apr 2005	38.6	98
10633	RAVENSTHORPE	-33.5797	120.0461		Jan 1962 Apr 2005	43.0	87
10905	JACUP	-33.8878	119.1092		Aug 1993 Apr 2005	11.8	96
12044	CHEADANUP	-33.5547	120.6997		May 2002 Apr 2005	3.0	99
12281	MUNGLINUP MELALEUCA	-33.5969	120.7578		Apr 1975 Mar 2001	25.8	84

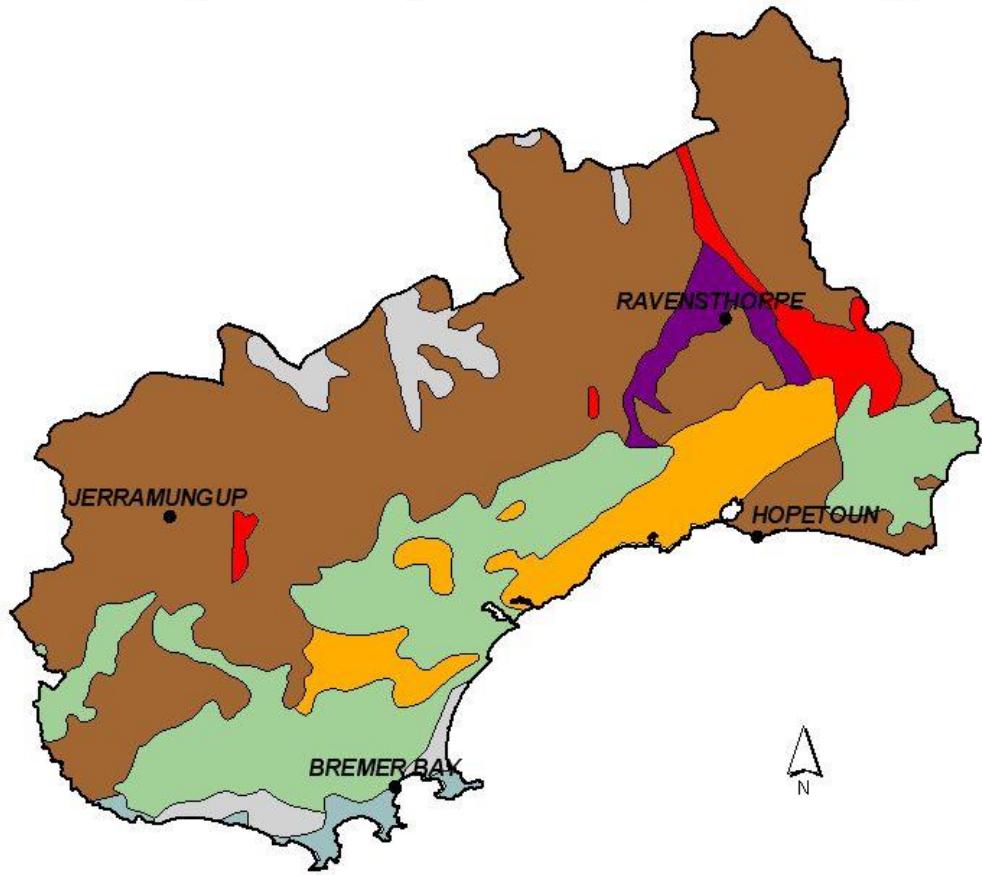
4. GEOLOGY

4.1 Mapping

The Fitzgerald Biosphere region is covered by the Newdegate, Bremer Bay and Ravensthorpe sheets of the 1:250,000 National Mapping Grid. The Geological Survey of Western Australia has produced geological maps at this scale using the same grid. The maps are each accompanied by notes (Thom and Chin 1984; Thom, Chin and Hickman 1984; Thom, Lipple and Sanders 1977). Notes and maps have also been published at 1:100,000 for the Ravensthorpe and Cocanarup Sheets (Witt, 1997).

An interactive GIS-based mapping system, GeoVIEW.WA, is provided by the Department of Industry and Resources and allows geological maps to be constructed at scales and for areas chosen by the user. A number of data layers are accessible. Access to this system and the resulting maps are available free of charge. (See <https://geoview.dmp.wa.gov.au/geoview/>)

4.2 General geology and regional reviews


Clarke, Phillips and Prider (1954) described the Pre-Cambrian geology of the south coast from west of Albany to Israelite Bay.

A general description of the landforms of the south coast region, including the coastal formations and some parts of the near-shore sea floor is presented by Clarke and Phillips (1953).

Newbey's thesis (1979) gives a comprehensive overview of the geology of the central south coast, and he later summarised the geology of the Stirling Range-Ravensthorpe area, which covers most of the Biosphere (Newbey, 1985). Moir and Newbey (1995) described the physical environment, including the geology, soils and landforms of the Fitzgerald River National Park for the biological survey undertaken in the mid 1980s (Chapman and Newbey 1995). More recently, Green and Wetherley (2000) reviewed the geology and landforms and the mineral extraction occurring on the South Coast between Denmark and Eucla in a background paper to *Southern Shores 2001-2021: A strategy to guide coastal and marine planning and management in the South Coast Region of Western Australia* (South Coast Management Group, 2001).

The Geological Survey of Western Australia published a comprehensive account of the geology of Western Australia in 1990 in the third *Memoir* to be published by the GSWA in more than one hundred years. This publication provides an overview of the geological development and major geological units of WA and includes some revisions or clarifications of terminology.

Fitzgerald Biosphere - Simplified geology

LEGEND

- Town
- ◻ Sub-regional Boundary
- Geology:
 - Alluvial, shoreline and eolian deposits
 - Gneiss
 - Granite and Gneiss
 - Marine limestone, sandstone and valley-fill deposits
 - Metamorphosed basic and ultrabasic volcanic and intrusive rocks
 - Metamorphosed sedimentary and acid volcanic rocks
 - Metasedimentary rocks

MAP INFORMATION

Datum: GDA 1994.
Source / Acknowledgements: Department of Industry Resources WA (1999).
Disclaimer: While all reasonable effort has been taken in the preparation of this material, the FBG and its staff accept no responsibility for any errors or omissions it may contain or for any losses sustained by any persons who relies on it.
Copyright Fitzgerald Biosphere Group Incorporated 2005.

Map 4

4.3 Detailed geological studies

JS Roe noted lignite in Fitzgerald River when travelling through the area in 1848 and after the discovery of gold near Ravensthorpe in 1899 there were several further studies made in the area, many of which were documented by Newbey (1985). The geology of the Phillips River Goldfield was comprehensively described by Sofoulis (1958), and a number of other papers written in the 1950s and 1960s described the geology of other parts of the region, or particular geological formations or rock types: for example Clarke and Phillips (1955) and Cockbain (1968) described the Plantagenet Beds generally, while Kay, Glover and Pridor (1963) described its occurrence at Hummocks Beach near Bremer Bay; Cockbain and van den Graaf (1973) described the Fitzgerald River lignites; Wilson (1958) described granites and related rocks in the Jerramungup – Calyerup Creek area; Woodall (1958) describes the Pre-Cambrian rocks of the Cocanarup area; and Witt (1999) describes the Ravensthorpe Terrane unit of the Ravensthorpe greenstone belt.

Aspects of the evolution of the Mt Barren Group have been the subject of theses by Hollingsworth (1996), Stephens (1996) and Wetherley (1998). The origins or the fossil contents of some of the sedimentary formations have been investigated by Hos (1975), Darragh and Kendrick (2000), Gammon and James (2001) and Gammon *et al* (2000).

While several papers have included reference to the marine origins of parts of the region, few have addressed the geological features and topography of the current marine environment, although von der Borch (1968) describes some features of the submarine canyons that lie off the south coast and Clarke and Phillips (1953) give a very brief description of the physiography of the sea floor.

The geomorphology of the south coast's estuaries has been extensively described by Hodgkin (1998); Hodgkin and Clark (1987, 1988, 1990); Hodgkin and Hesp (1998) and Hodgkin and Kendrick (1984). These are discussed further in Section 9 along with other work on estuarine environments.

4.4 Other

Many other Biosphere references include some account of the geology as it affects other aspects of the environment, particularly the references to the soils and to the hydrogeology and hydrology of the area (see for example Dodson 1997, 1999; Johnson 1998; Overheu 2002, 2004). Other research has looked at relationships between geology and vegetation (eg Bennett 1987), geology and wetlands (eg Diamond 1996), or the impacts of geology on contemporary land degradation (Harper 1994).

There have been many other geological investigations related to mining and mineral potential, particularly in the Ravensthorpe Range area where nickel and other minerals have been mined, and also in areas where mineral sands or magnetite occur. Papers or information dealing mainly with mineral prospectivity have been excluded from this review and bibliography, as they are outside the scope of the project. Some

of this information can be accessed through the on-line databases of the Department of Industry and Resources (<http://www.dmp.wa.gov.au>), or is held by the mining companies active in the area (eg BHP Billiton Ravensthorpe Nickel Operations Pty Ltd, Tectonic Resources NL).

5. LANDFORMS

Since the early Dutch maritime explorations and reports of the south coast in the seventeenth century, many descriptions of the physical features have been contributed by explorers, surveyors and geologists. Bradby (1989) documents some of these observations in his chronology of the Fitzgerald River National Park.

A review of the physiography of the south coast region between Long Point (near Nornalup Inlet) and Israelite Bay is given by Clarke and Phillips (1955), with descriptions of the coast and adjacent seabed, the islands and some of the prominent features of the hinterland. Newbey (1979) gives detailed descriptions of geomorphology and soils at 756 sites across about 10,000 km² of the central south coast⁴ and used valley types as the main landscape type descriptors. Moir and Newbey (1995) described the main geomorphological units of the Fitzgerald River National Park and similar units were used by Bradby (1989) in his description of the Park.

The evolution of the rivers of the southwest, including the south coast, is discussed by Beard (1999), while the geomorphology of wetlands has been used as the basis of wetland classification by V and S Semeniuk Research Group (1998) and by Ecologia (2000).

Coastal features have been described by Clarke and Phillips (1955) and by Green and Wetherley (2000). Estuarine geomorphology and form have been discussed extensively by Hodgkin and Lenanton 1981; Hesp 1984; Hodgkin and Kendrick 1984; Hodgkin and Clarke 1987, 1988, 1990; Hodgkin 1997; Hodgkin and Hesp 1998; and Bancroft et al 1997.

The Western Australian Department of Agriculture developed a system of soil-landscape mapping using a wide range of geology, geomorphology, soils and landscape information and have applied this at several scales within WA in land capability planning and assessment of risk from various land degradation processes. The methodology is described by Schoknecht et al (2001) and its outputs have contributed to descriptions of catchment characteristics for the Bremer-Gairdner (Overheu, 2004) and the North Jerramungup – Fitzgerald area (Overheu, 2002).

⁴ Newbey's Central South Coast Study area includes most of the western part of the Fitzgerald Biosphere Region, and extends further west to 118°69' and north to 33°67'S. It does not extend further east than the eastern boundary of the Fitzgerald River National Park.

6. SOILS

6.1 Soil Descriptions and Mapping

Soils have been extensively mapped, mostly at 1:250,000 although parts of the Biosphere have been mapped at a larger scale. Schoknecht, Tille and Purdie (2001) describe how mapping originally undertaken as part of the Atlas of Australian Soils (Northcote *et al* 1967) and subsequent soil surveys and site descriptions, have been used in the development of soil and landscape maps for Western Australia, including the south coast region.

For some catchments, such as the Jerdacuttup (Moore *et al* 2001), soil-landform maps have been produced at 1:50,000 as part of land resource capability studies. This also provides detailed soil and landform descriptions. Soil-landform units have also been mapped and described in detail in Rapid Catchment Appraisals for the North Jerramungup-Fitzgerald area (Overheu 2002, Schiller 2003) and the Bremer-Gairdner catchment (Overheu 2004).

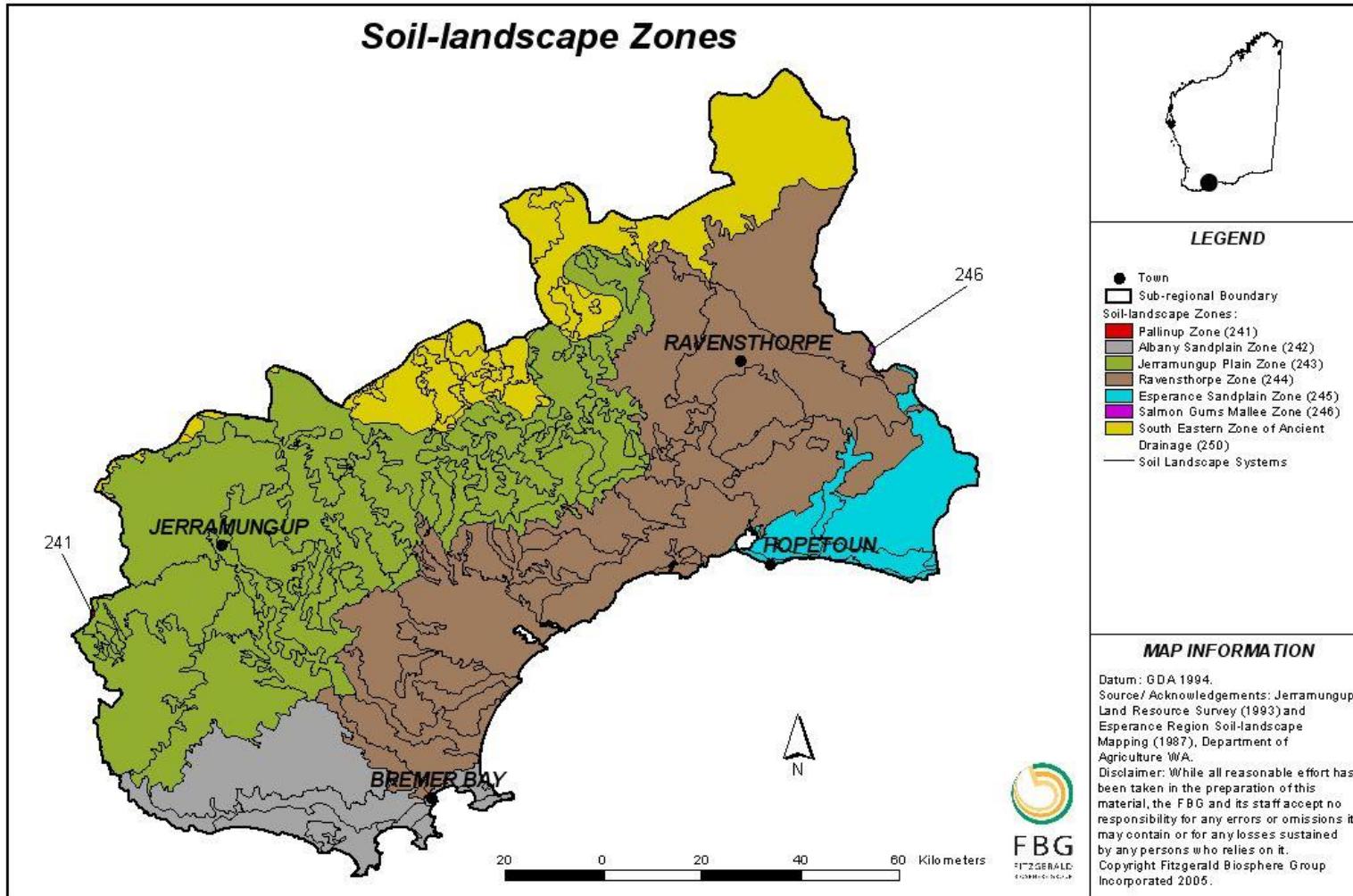
Newbey (1979) described soils and landforms as part of his 1:40,000 vegetation mapping for the central south coast area, and described soils for the biological survey sites within the Fitzgerald River National Park (Chapman and Newbey 1995).

Stoneman (1990) provided descriptions of the main soils of the Jerramungup agricultural area, and Overheu (1995, 1996) prepared soil information sheets for the Jerramungup and Ravensthorpe agricultural areas summarising soil physical and chemical properties and their main management considerations. Land resource capability studies are in preparation for the Jerramungup and Ravensthorpe areas (Overheu, Department of Agriculture pers. comm.).

6.2 Soil interactions

Soil type obviously influences vegetation and other aspects of ecology, so many of the references to vegetation, for example, also include discussion of the soils. Newbey (1979) related the vegetation associations and communities to soils, while Hopper (1979), Hopper *et al* (1996), Hopper and Gioia (2004) and McQuoid (2003) all include consideration of the mosaic of soil types among the reasons for the plant diversity and local endemism evident in the Fitzgerald area.

There have also been specific studies on the chemistry, physics or microbiology of particular soils of the region and their relationships to vegetation or fauna. For example, several studies by Cowling and Witkowski (1994), Cowling *et al* (1994), Milewski (1981, 1982, 1983, 1984, 1986), Milewski and Bond (1982) and Milewski and Cowling (1985) compared ecosystems at the Barren Ranges with systems in the Caledon Coast area of South Africa and related similarities and differences to a number of factors, including soil fertility and other edaphic conditions.


Boulet (2004) examined the effect of ultramafic soils with high nickel content on mycorrhizal symbiosis, reproduction and survival of native plants near Bandalup Hill. Shearer and Crane (2003) looked at soil types within the Fitzgerald River National

Park and compared their effects on the mortality rates of *Banksia baxteri* infected by *Phytophthora cinnamomi*. Other microbial studies have included comparisons of *Rhizobium* strains collected from field sites with different soil salinities on growth of *Acacia* species (Craig 1989, Craig *et al* 1990, 1991).

Table 4: Simplified Description of Soil Landscape Zones occurring within the Fitzgerald Biosphere (see Map 5)

Soil-landscape Province, Zone	Code	Description
Stirling Province	24	Laterized plateau on Tertiary sediments, dissected at fringes. Emergent quartzite ranges, coastal headlands of gneisses and migmatites. Coastal dune systems in places.
Pallinup Zone	241	Undulating rises on Archaean granitic rocks in the Upper Pallinup catchment. Shallow duplex soils, commonly with sodic and alkaline subsoils. Woodlands of York and salmon gums, wandoo and yate dominate.
Albany Sandplain Zone	242	Gently undulating plain dissected by a number of short rivers flowing south. Eocene marine sediments overlying Proterozoic granitic and metamorphic rocks. Soils are sandy duplex soils, often alkaline and sodic, with some sands and gravels.
Jerramungup Zone	243	Level to gently undulating plain dissected by a number of short rivers flowing south. On Eocene marine sediments overlying Proterozoic granitic and metamorphic rocks. Alkaline sandy duplex soils with some clays, sands and gravels.
Ravensthorpe Zone	244	Rolling low hills on greenstone (mafic and ultramafic). Moderately dissected with south flowing rivers. Red, fine textured soils.
Esperance Sandplain Zone	245	Level to gently undulating plain dissected by a number of short rivers flowing south. Formed on Eocene marine sediments overlying Proterozoic granitic and metamorphic rocks. Soils are grey fine sandy duplex soils and fine sands.
Salmon Gums- Mallee Zone	246	Level to gently undulating plain, with Tertiary sediments over Proterozoic granites. Salt lakes, scattered or in swarms are a common feature. Drainage lines become indistinct towards the north.
Avon Province	25	The Avon Province comprises Precambrian granites and gneisses with past lateritic weathering. Soils may be calcareous, but red-brown hardpans are uncommon (Duric Great Groups).
South-eastern Zone of Ancient Drainage	250	A smooth to irregularly undulating plain dominated by salt lake chains in the main valleys with duplex and lateritic soils on the uplands. Mallee vegetation on duplex soils, Proteaceous vegetation on gravels and sands.

Extracted from: Schoknecht *et al* (2000) "Soil-landscape mapping in south-western Australia. An overview of methodology and outputs". Department of Agriculture, WA.

Map 5

Table 5: Landforms, Soils and Vegetation of the Fitzgerald River National Park

Adapted from Department of Conservation and Land Management (1991)

LANDFORM	GEOLOGY	SOIL TYPE	VEGETATION	TOPOGRAPHY	DRAINAGE
Upland ⁵	granites, gneisses	<ul style="list-style-type: none"> extensive areas of shallow loamy sand skeletal soils associated with granite exposures 	<ul style="list-style-type: none"> very open mallees of <i>E. redunca</i> or <i>E. tetragona</i> Allocasuarina, Grevillea and Acacia scrub/heath associated with granite outcrops 	<ul style="list-style-type: none"> dominated by undulating plain: internal relief less than 10m, slopes less than 2° v-shaped valleys: incised 100-160m, 3-12° slopes 	<ul style="list-style-type: none"> undulating plain: dendritic and coarse v-shaped valleys: single channel with flows in winter/spring generally moderately well-drained
Plain ⁶	spongolite, siltstone	<ul style="list-style-type: none"> duplex shallow sandy loams, colluvial sands and cracking clays skeletal soils on bedrock exposures 	<ul style="list-style-type: none"> very open mallee of <i>E. decipiens</i> widespread elsewhere open to very open shrub mallee 	<ul style="list-style-type: none"> flat plain: internal relief rarely exceeds 10m, generally less than 1° slope 	<ul style="list-style-type: none"> uncoordinated drainage: large areas with no run off, sumps and gilgais dissected drainage on coast and river margins water-logged winter/spring at least, generally poorly drained
Valleys ⁷	spongolite, siltstone	<ul style="list-style-type: none"> sandy loam – shallow on walls, deeper on valley floor 	<ul style="list-style-type: none"> open shrub mallee of <i>E. conglobata</i> and <i>E. incrassata</i> on valley floors and drainage lines low woodland on slopes and rims open mallee on mesas 	<ul style="list-style-type: none"> steep-sided valleys cut into flat plain; flat, broad valley floors 	<ul style="list-style-type: none"> broad valleys, intermittent flow, small flow in winter/spring, generally small linear pools moderately well drained in upper reaches to poorly drained near inlets

⁵ Source: Department of Conservation and Land Management 1991

⁶ Source: Department of Conservation and Land Management 1991

⁷ Source: Department of Conservation and Land Management 1991

LANDFORM	GEOLOGY	SOIL TYPE	VEGETATION	TOPOGRAPHY	DRAINAGE
Ranges ⁸	quartzite, phyllite, dolomite, conglomerates	<ul style="list-style-type: none"> quartzite sand on quartzite phyllitic loamy sand or schist duplex soils 	<ul style="list-style-type: none"> Banksia scrub and <i>Adenantheros</i> open low scrub on quartzite Very open shrub mallee of <i>E. incrassata</i>, and Banksia and <i>Allocasuarina</i> low scrub on phyllitic schists 	<ul style="list-style-type: none"> rugged hills and stony rises 500m ASL, slopes range from 45° to vertical 	<ul style="list-style-type: none"> rapid run-off numerous short streams rapidly drain hills and rises well drained
Ravensthorpe Range ⁹	greenstone, sandstone and Banded Ironstone Formation, quartzite, lateritic caprock	<ul style="list-style-type: none"> dependent on underlying rock and slope position skeletal on ridges and upper slopes, deeper loamy sand to clayey sand on shallower slopes red clay on middle slopes 	<ul style="list-style-type: none"> <i>E. astringens</i> low woodland intermixed with <i>E. gardneri</i> and <i>E. nutans</i> open shrub mallee of <i>E. falcata</i> on quartzite sands and gravelly sands; <i>E. flocktoniae</i> on clayey sands Dryandra or Banksia low scrub on skeletal gravelly sand 	<ul style="list-style-type: none"> hills to 150m above the surrounding plain, lower slopes of 5-10°, increasing upslope to 20-30°. 	<ul style="list-style-type: none"> well drained, unidirectional, becoming dendritic into Jerdacuttup River
Jerdacuttup Plain ¹⁰	Granite, gneiss, quartzite, siltstone	<ul style="list-style-type: none"> shallow to moderately deep duplex sand over gravel significant area of deep uniform sands 	<ul style="list-style-type: none"> mallees, including <i>E. tetragona</i> and <i>E. teraptera</i>, and Banksia shrubland 	<ul style="list-style-type: none"> level to gently undulating plain, slopes generally less than 3° some mound or depression micro-relief; slopes of up to 10° on valley sideslopes near coast 	<ul style="list-style-type: none"> poorly drained, some waterlogging in depressions
Dunes ¹¹	sand over spongolite or	<ul style="list-style-type: none"> loose calcareous or 	<ul style="list-style-type: none"> mallee and shrubland 	<ul style="list-style-type: none"> narrow sand-dunes occur 	<ul style="list-style-type: none"> well drained

⁸ Source: Department of Conservation and Land Management 1991. Refers to Ranges within Fitzgerald River National Park

⁹ Source: Chapman and Newbey 1995a

¹⁰ Sources include Moore et al 1991, Craig 1995, Department of Environment 2004

¹¹ Source: Department of Conservation and Land Management 1991

LANDFORM	GEOLOGY	SOIL TYPE	VEGETATION	TOPOGRAPHY	DRAINAGE
	quartz	siliceous sands	becoming lower and denser heath closer to the coast	on several coastal sections: 2-5m high, varying slope depending on stability	<ul style="list-style-type: none"> occasional areas of impeded drainage over limestone
Inlets¹²	incised in quartzite, spongolite or limestone	<ul style="list-style-type: none"> saline soils next to inlet narrow deposits of colluvium and alluvium spongolite, at some slope and cliff bases 	<ul style="list-style-type: none"> Melaleuca woodland or shrubland on edges Samphire heath on flats 	<ul style="list-style-type: none"> all major rivers in Park terminate in an inlet: incised to 100m, only partially filled, expansive flat floors, generally fringed by steep slopes or cliffs 	<ul style="list-style-type: none"> water occupies only small portion of floor generally barred from the sea poorly drained
Rivers, swamps and lakes¹³	granites, spongolite, quartzite	<ul style="list-style-type: none"> dependent on underlying rock 	<ul style="list-style-type: none"> <i>E. occidentalis</i> woodland dominant 	<ul style="list-style-type: none"> rivers generally single-channelled: v-shaped in upland; broad, cliffted meanders on plain swamps generally on plain 	<ul style="list-style-type: none"> rivers moderately well drained swamps poorly drained

¹² Source: Department of Conservation and Land Management 1991

¹³ Source: Department of Conservation and Land Management 1991

7. HYDROGEOLOGY

The Department of Environment (formerly Water and Rivers Commission) produces 1:250,000 hydrogeology maps and accompanying explanatory reports for most of WA. The Biosphere area is covered by the Bremer Bay, Ravensthorpe and Newdegate sheets (Dodson 1997, 1999, Johnson 1998). These reports and information from the network of bores monitored by the Departments of Agriculture and Environment and by individual landowners, have been used by other authors in studies of groundwater at more localised scales. The Department of Agriculture maintains the AgBores database, while Department of Environment data is included in their WIN database.

Lillicrap (2004) described the groundwater flow systems and trends for the different soil-landscape zones within the Biosphere. Short *et al* (1997) described groundwater trends for the West River catchment. The Rapid Catchment Appraisal reports for the North Jerramungup-Fitzgerald (Overheu 2002) and the Bremer-Gairdner areas (Overheu 2004) include discussion of hydrogeology.

As part of the NHT-funded Chingarrup-Yenteyerrup Swamp Bushland Restoration and Preservation Project by the Swamp Road Catchment Group, Maxwell Geoservices compiled a Report on the Geophysical Interpretation and Database Compilation for that catchment (Maxwell Geoservices 2002).

Groundwater and salinity trends have also been addressed at a state and regional scale by Short and McConnell (2001) as part of the National Land and Water Resources Audit, and for the Biosphere subregion by Ferdowsian *et al* (1994).

The V & C Semeniuk Research Group (1998) included consideration of geology and hydrology in delineating wetland suites between Walpole and the Fitzgerald Inlet, while Diamond (1996) described the hydrogeology of the wetlands in the Bremer Bay area in more detail.

8. RIVERS AND WETLANDS

NOTE: The Convention on Wetlands (Ramsar, Iran, 1971; commonly known as the Ramsar Convention) defines a wetland as:

any area of marsh or water, whether natural or artificial, permanent or temporary, with water static or flowing, fresh, brackish or saline, including areas of marine water which support mangrove or samphire communities.

For convenience in this report however, references are described under the headings of wetlands (meaning lentic or static water systems) or rivers (including creeks). Some of the references may be relevant to both types of wetlands.

The Biosphere area includes several river systems that flow south to estuaries or coastal lagoons before discharging into the Southern Ocean. The largest of these, based on length, catchment area and mean annual flow, is the Pallinup River at the western end of the Biosphere. The Pallinup also has one of the most heavily cleared catchments and flows mostly through farmland. Several rivers or creek systems have

their catchments entirely or mostly within the Fitzgerald River National Park and are therefore considered to be in near-pristine condition. Two of these, the St Marys and the Dempster Rivers, meet the criteria for Wild Rivers¹⁴. All of the rivers and creeks are either intermittent, flowing seasonally, or ephemeral, flowing only for short periods after rain.

The wetlands of the region have not been extensively studied but are also mostly intermittent or ephemeral.

8.1 Wetlands

V&C Semeniuk Research Group (1998) have applied a wetland classification system based on geomorphology and hydrology across the area from Walpole (west of the Fitzgerald Biosphere) to the Fitzgerald Inlet and identified wetlands into a series of consanguineous suites. Preliminary assessments of their conservation values were also identified and the wetlands mapped. The wetlands east of the Fitzgerald Inlet were similarly assessed and mapped by Ecologia (2000). The Department of Environment and GreenSkills have used the preliminary wetlands mapping and identification to undertake further assessments of individual wetlands and suites and to develop management plans with landholders (see for example, Hopkinson (2001) for management recommendations developed for the Bremer wetlands).

The hydrogeology of the Bremer wetlands was also described by Diamond (1996) and wetlands classified independently of the Semeniuk study. A similar grouping of wetlands was arrived at, with minor differences attributed to the paucity of information as well as the gradational nature of the wetland classifications.

There are very few reports on the biota of the wetlands specifically, although some information may be found in some of the broader works on vegetation and fauna. The Department of Conservation and Land Management and Birds Australia have, however, reported on annual waterbird counts across a number of wetlands in the south-west, including several in the Fitzgerald Biosphere region (Halse et al 1990, 1992, 1993, 1994, 1995). Halse, Pearson and Patrick (1993) also described the vegetation for some wetlands in nature reserves in the area.

The Yellilup Yate Swamp System, a system of twelve wetlands north of the Bremer Bay Road, is listed on the Directory of Important Wetlands for Australia. Information about the listing can be found on the Australian Wetlands Database at the Department of Environment and Heritage website

<http://www.deh.gov.au/water/wetlands/index.html>

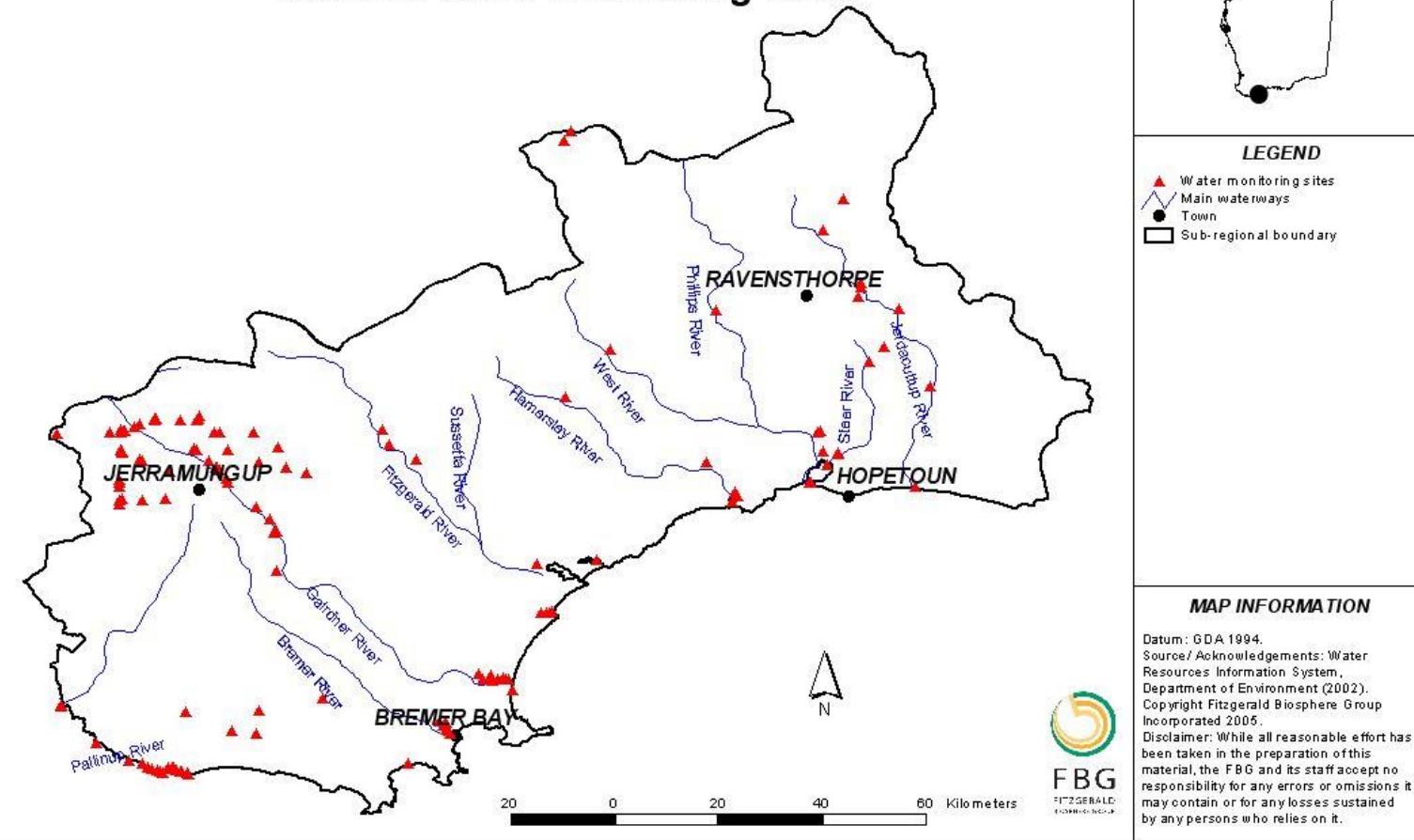
¹⁴ The Australian Heritage Commission, in association with the States and Territories, assessed the condition and “naturalness value” of rivers nationally to compile a “river wildness” index, primarily based on indices of catchment and waterway disturbance. See Environment Australia (1999) *Principles and a code for the management of Wild River values*. Environment Australia, Canberra; and Stein JL, Stein JA, Nix H (undated) *The identification of Wild Rivers; methodology and database development*. Environment Australia, Canberra.

8.2 Rivers

Information on the rivers of the Biosphere is sparse, although the Department of Environment collated all available monitoring information as part of the preparation of the Draft South Coast Regional Natural Resource Management Strategy (SCRIPT 2004).

Some “snapshot” water quality monitoring was undertaken in the rivers of the Fitzgerald River National Park under a grant to the Fitzgerald River National Park Association in 1985 (Chapman, 1985) and funding has recently (2006) been made available to repeat this monitoring.

Other water quality and limited flow monitoring is undertaken by the Department of Water (formerly the Department of Environment) and can be accessed via their website (www.water.gov.au). Water monitoring sites are shown in Map 6.


Several sites within the Biosphere were included in the Australia-wide Monitoring River Health Initiative (commonly referred to as AusRivAS), funded through the Australian Government and conducted in WA by the Department of Conservation and Land Management (Halse, Scanlon and Cocking 2002). A student from Murdoch University has recently completed a PhD thesis in which specimens collected as part of the AusRivAS program were further analysed to determine the conservation status of aquatic insects in south-western WA (Sutcliffe 2003).

Fish and crustacean of the estuaries and rivers of the south coast were described by Lenanton (1974), and the biological survey of the Fitzgerald River National Park, conducted in 1985-1987 included collecting inland fish from the main rivers and several smaller creeks (eg Twertup, Woodenup Creeks) within the Park (Chapman 1995). One of the species collected was the Spotted Minnow (*Galaxias maculatus*) and Chapman has since written a thesis on the biology of this species on the south coast (Chapman 2003).

Leighton and Watson (1992) conducted preliminary biological surveys of the Fitzgerald River and Corackerup Creek corridors (and the Young and Lort Rivers to the east of the Biosphere) as part of the “Save the Bush: South Coast River Corridor Project” in 1991. Their report summarised available information for the areas surveyed and reports the results of fauna surveys conducted within the riverine zones.

The Department of Water (formerly the Department of Environment, and pre-2004 the Water and Rivers Commission) has prepared “River Action Plans” for the Bremer River and Devils Creek (Water and Rivers Commission 2001), the Phillips River (Water and Rivers Commission 2003) and for the Jerdacuttup River (Department of Environment 2004). These plans summarise catchment and river information, include foreshore vegetation assessments and develop management plans primarily addressing fencing of waterways and revegetation of streamsides in conjunction with riparian landholders. The Department compiled similar information for the Fitzgerald River which is included in a catchment folder for the Fitzgerald produced by the Fitzgerald Biosphere Group (Water and Rivers Commission 2003).

**Department of Environment
Surface Water Monitoring Sites**

Map 6

8.3 Hydrology, catchments and surface water management

Most work on the hydrology and surface water management in the area has been in relation to agricultural productivity and was not extensively reviewed in the current project. An exception is the thesis by Michelle Carey that looked at the impacts of hydrological change on Flat-topped yate (*Eucalyptus occidentalis* Endl.) and its associated communities, and the implications for management of salinity in the landscape (Carey 2004).

Farmer et al (2002) investigated aspects of the Upper Fitzgerald River, primarily to make recommendations on the management of the surface water to arrest degradation in the Lake Magenta Nature Reserve.

Groundwater trends in the Fitzgerald Biosphere have been described by Lillicrap (2004). The Department of Agriculture conducted “Rapid Catchment Appraisals” for the North Jerramungup-Fitzgerald area (Overheu 2002) and for the Bremer-Gairdner area (Overheu 2004) and the resulting reports collate resource information, assess the prospects for salinisation and other land degradation, and propose management actions for landholders to address the problems.

Several landcare and other catchment-based community groups in the region have produced reports resulting from projects conducted under the Natural Heritage Trust or National Landcare Programs. These reports generally include some discussion of the management issues and report on revegetation, fencing or surface drainage works to alleviate catchment problems. Examples include Tomlinson and Brown (1999) for the Upper Gairdner catchment, Schiller (2003) for the Fitzgerald River catchment and Lisson (1994) for the Swamp Road catchment. Major projects currently underway in the Fitzgerald and West River catchments, being managed by the Fitzgerald Biosphere Group and the Ravensthorpe Agricultural Initiative Network respectively, are compiling further catchment information, management and evaluation strategies.

9. NEAR SHORE MARINE ENVIRONMENT (INCLUDING ESTUARIES)

The geology of the south coast, including the near shore environment, has been described in a number of papers (see for example Clarke and Phillips, 1953 and other papers mentioned in the section on geology) although generally at a regional, rather than at a detailed or local scale. Submarine canyons off the southern coast were described by von der Borch (1968), and several papers have described the geomorphology of the south coast’s estuaries (Hesp 1984; Hodgkin 1997, 1998; Hodgkin and Clarke 1987, 1988, 1990; Hodgkin and Hesp 1998; Hodgkin and Kendrick 1984).

The Marine Parks and Reserves Selection Working Group acknowledged the poor state of knowledge of marine biota when making its recommendations on marine

reserves for the south coast area (Department of Conservation and Land Management, 1994) and based their recommendations largely on shore geomorphology. The Working Group acknowledged however that the WA Museum had made some reference collections of marine fauna.

The populations of Australian sea lions and New Zealand fur seals along the south coast, including breeding and haul out sites in the Fitzgerald Biosphere, have been discussed by Abbott (1979), Gales (1990), Gales *et al* (1994, 2000) and Shaughnessy *et al* (1994). Bannister (1990, 2001, 2002) has described annual counts and photo-identifications of Southern Right Whales and Holst (year?) has speculated on the possible reasons for the high numbers of Southern Right Whales calving in Doubtful Islands Bay.

The Department of Conservation and Land Management's Marine Conservation Branch conducted marine biological surveys in waters offshore from the Fitzgerald Biosphere in 1997 as part of the South Coast Terrestrial and Marine Reserve Integration Study (Colman, 1998). As part of an Australia-wide project by the CSIRO, benthic habitats were mapped at 1:100,000 from Landsat TM imagery (Kirkman, Appendix 4 in Colman, 1998).

9.1 Estuaries

Hodgkin and Clark compiled information on estuaries of the south coast which were published by the Environmental Protection Authority as part of a series of reports titled "*An inventory of information on the estuaries and coastal lagoons of south Western Australia*". The three reports covering the Biosphere area included Wellstead Estuary (1987), Beaufort and Gordon Inlets (1988), and Fitzgerald, Hamersley, Dempster, Saint Mary and Culham Inlets, the Jerdacuttup Lakes and several smaller systems within the Fitzgerald River National Park (Quoin Head Creek, Boondadup River, Kelly's Creek and Lake Nameless) (1990). Each report summarises the catchment characteristics and gives information on the landforms, bars, water depths in the inlets, bottom sediments and water characteristics, as well as information on estuarine vegetation and fauna.

The geomorphology and evolutionary history of the south coast's estuaries, and the implications for their management, are discussed in several papers, including Hesp (1984), Hodgkin (1997, 1998), Hodgkin and Hesp (1998), Hodgkin and Kendrick (1984) and Hodgkin and Lenanton (1981).

As background to the South Coast Terrestrial and Marine Reserve Integration Study, Bancroft *et al* (1997) reviewed available information on estuaries and their catchments, with much of the available information coming from the studies by Hodgkin and Clarke (1987, 1988, 1990) described above. Congdon and McComb (1986) looked at aquatic macrophytes in Wellstead Estuary and Gordon Inlet in relation to salinity fluctuations associated with bar openings, and Forbes (2004) compared the relationships between benthic vegetation and invertebrate communities in Wellstead Estuary with those in Wilson Inlet near Denmark.

Lenanton (1974, 1984) has described some of the fish found in south coast estuaries, while Young and Potter (2002) studied the influence of extreme ranges of salinity due to bar openings and flooding on the fish communities in Wellstead Estuary. Sarre and Potter (1999, 2000) and Sarre *et al* (2000) investigated the diet, reproduction and growth of black bream in Wellstead Estuary as part of a wider comparative study into the effects of various estuary characteristics on this species. The Department of Environment and the Shire of Jerramungup are currently preparing a management plan for the Wellstead Estuary and are collating known biophysical information (Department of Environment 2004). The Department of Environment also has monitoring sites within several of the estuaries in the Biosphere, including Beaufort, Hammersley and Gordon Inlets, and measures nutrients, salinity and water levels quarterly. The monitoring of nutrients and the available macroinvertebrate monitoring was summarised by the Department of Environment in a background paper to the South Coast Regional Natural Resource Management Strategy (SCRIPT, 2004).

Waterbird use of a number of south-west wetlands, including the Jerdacuttup Lakes and the estuaries of the south coast, have been monitored annually for more than ten years and are summarised in a series of reports for the Department of Conservation and Land Management (Halse *et al* 1990, 1994, 1995).

Both Culham Inlet and the Fitzgerald Inlet system are listed on the Directory of Important Wetlands for Australia. Information provided as part of the nomination to the Directory can be found in the Australian Wetlands Database on the Department of Environment and Heritage website (<http://www.deh.gov.au/water/wetlands/index.html>)

10. VEGETATION & FLORA

10.1 Historical

The flora of the Fitzgerald Biosphere area was noted by many early explorers and collections were made in the area from at least the 1840s by collectors such as James Drummond, George Maxwell and, later, CA Gardner. These early botanical explorations in the area have been reviewed by Bradby (1989) and Craig (2000).

10.2 Significance of the area

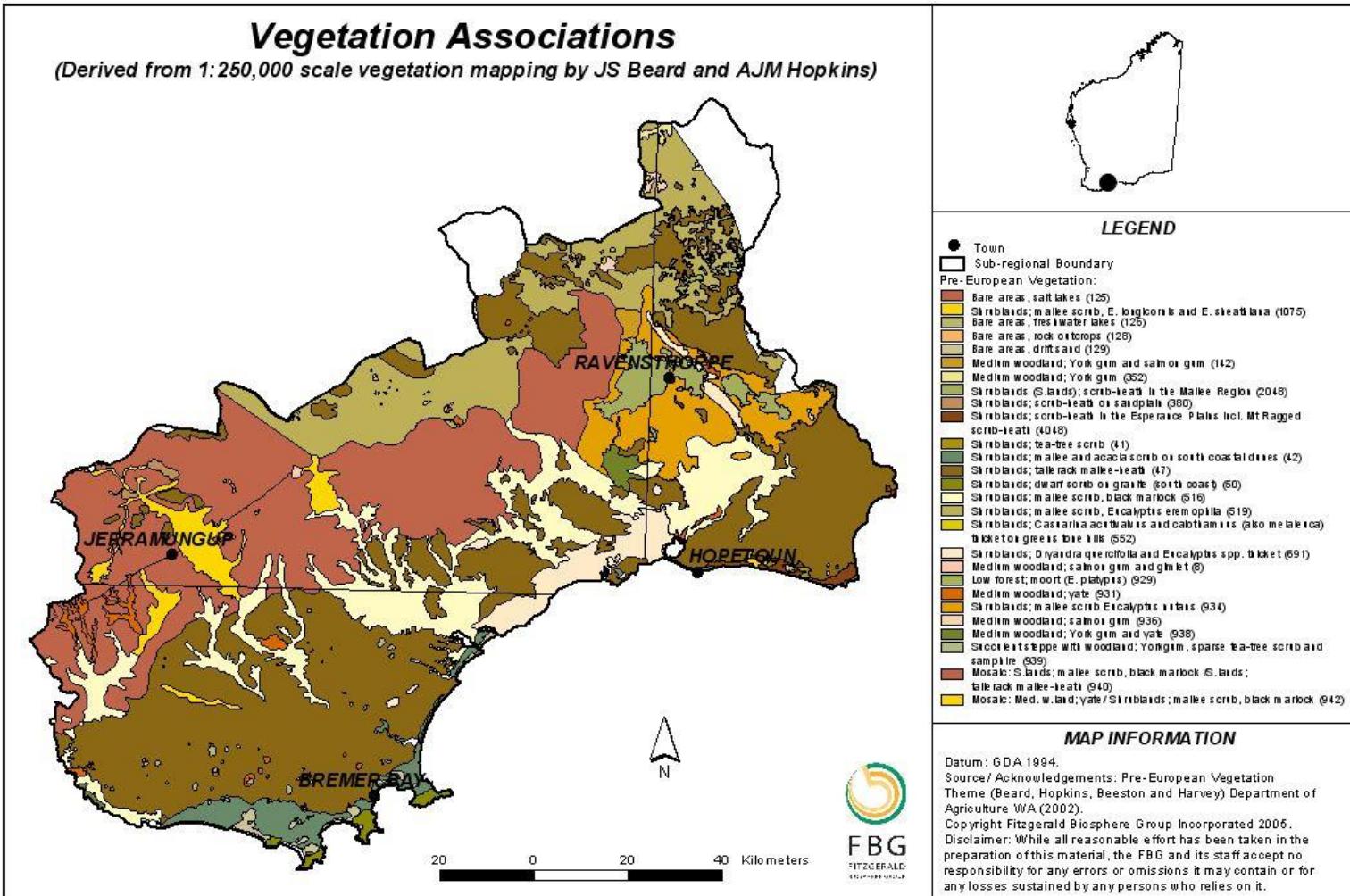
The Gondwanan origins of the south-west of WA have been described by several authors, including for example Hopper *et al* (1996). These, and other studies of the evolution (for example Hopper 1979; Hopper and Gioia 2004) and phytogeography (eg Keighery 1996; Lamont and Connell 1996) of the vegetation and flora, assist to explain the extraordinary species diversity and endemism seen throughout the south-west and in the southern sandplains in particular. McQuoid (2003) has also summarised the reasons for this species richness within the Fitzgerald Biosphere area.

An analysis by Groom and Lamont (1996) of the occurrence of *Hakea* species identified the Barrens as one of four centres of diversity in the south-west for this genus.

10.3 Botanical surveys and reviews

The vegetation and flora of the Fitzgerald River National Park was surveyed by Aplin in 1970-71 and the vegetation mapped at 1:250,000 (Aplin 1971; Aplin & Newbey 1990a, 1990b). Beard described vegetation surveys and mapped plant communities for the south-west of Western Australia at 1:250,000. The Fitzgerald Biosphere area is covered by the Bremer Bay, Newdegate and Ravensthorpe map sheets (Beard 1972a and b, 1979). Newbey (1979a) described plant associations for the central south coast and mapped them at 1:40,000. Newbey's thesis also included detail of geology, geomorphology and soils. These maps have recently been digitised (Mercer 2003b).

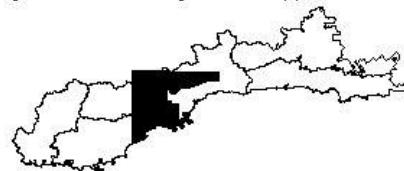
The 1985-87 biological survey of the Fitzgerald River National Park provided further detailed description of the Park's vegetation and flora and established permanent vegetation plots (Chapman and Newbey 1995b). Some of these have since been monitored again (Hopper 1992; Sanders 1997). Newbey (1986a, 1990) listed flora of the Fitzgerald River National Park that are rare, threatened or otherwise of special conservation value. The 1985-87 surveys and subsequent work on flora by Newbey have been used to prepare flora lists for the Park, most recently by Newbey and McQuoid (1997).


Craig (2000) reviewed and summarised the vegetation and flora of the south coast region for the South Coast Management Group as a background paper to the development of the south coast's regional coastal planning and management guide, *Southern Shores*.

Rare and threatened plant species in the Biosphere have been described by Robinson and Coates (1995) as part of a wider project detailing rare and poorly known flora for the Department of Conservation and Land Management's Albany District.

Numerous, more localised surveys have been undertaken throughout the Fitzgerald Biosphere. Many of these have been undertaken by mining companies or as a result of other development proposals. Only a very limited number of these studies have been accessible to the current project, but where known they have been listed in the accompanying bibliographic database. Most are associated with the Ravensthorpe Nickel Project (eg Cockerton & Craig 2000, 2001; Cockerton & Evelegh 2002; Cockerton, Evelegh & Craig 2002; Craig 1998a, 1998b, 1998c, 1999a, 1998b, 1999c; Craig & Chapman 1998), other mining developments in the Ravensthorpe/Kundip area (Craig 1992b, 2002a, 2003b, 2004a, 2004b; Outback Ecology 2003), or with townsite and infrastructure development, particularly around Ravensthorpe and Hopetoun (eg Craig 1998d, 2001a, 2001b, 2003c, 2003d; Ecologia 1998).

Vegetation Associations


(Derived from 1:250,000 scale vegetation mapping by JS Beard and AJM Hopkins)

Map 7

Extent of Newbey vegetation mapping

Regional extent of vegetation mapped shown here.

LEGEND

- Town
- South Coast Sub-regional boundaries
- Newbey Vegetation Associations:
See detailed legend following.

MAP INFORMATION

Datum: GDA 1994.
Notes:
1. Some minor adjustments of vegetation line work was needed to match the digital hydrology dataset.
2. Vegetation codes have been modified to match current knowledge and convention.
Source/Acknowledgements: Prepared and produced for the Gnowangerup LCDC. Project supervised by Jack Mercer. Project funded by NHT, WRC and Department of Agriculture. Project administered by Gnowangerup LCDC. Vegetation digitised from 1:40,000 map series, hand drawn by Kenneth Raymond Newbey (1936-1988) from aerial photography (flown 1968) and the authors field surveys and compilations (1973) in: Newbey K.R. (1979) The Vegetation of Central South Coast Western Australia, Thesis (M. Phil), Murdoch University, WA.
Disclaimer: While all reasonable effort has been taken in the preparation of this material, the FBG and its staff accept no responsibility for any errors or omissions it may contain or for any losses sustained by any persons who relies on it.
Copyright Fitzgerald Biosphere Group Incorporated 2005.

Map 8

Newbey Vegetation Associations - Legend

Acacia cochlearis (Acco)	Lake (L)
Acacia lasiocalyx (Aclax)	Laterite (LA)
Agonis flexuosa (Agfl)	Limestone (LI)
Allocasuarina campestris (Alca)	Mud flat (MF)
Allocasuarina huegeliana (Alhu)	Melaleuca cuticularis (Mcut)
Banksia heath (BH)	Melaleuca complex/ M. elliptica (Mel)
Banksia attenuata (Batt)	Melaleuca nesophila (Mnes)
Banksia baxteri (Bbax)	Melaleuca pentagona (Mpen)
Banksia verticillata (Bver)	Melaleuca uncinata (Munc)
Coastal granite (CG)	Olearia axillaris (Oaxi)
Coastal limestone (CL)	Quartzite (Q)
Chenopodium spp. (Chp)	River/ Rush (Rr)
Cladium spp. (Cld)	Spongolite (S)
Casuarina obesa (Cobe)	Saline flat (SF)
Calothamnus quadrifidus (Cqua)	
Swamp - fresh (D)	
Swamp - saline (DS)	
Dryandra complex (Dry)	
Dune (Dune)	
Eucalyptus annulata (Eann)	
Eucalyptus astringens (East)	
Eucalyptus buprestium (Ebup)	
Eucalyptus calophylla (Ecal)	
Eucalyptus conglobata (Econ)	
Eucalyptus cornuta (Ecor)	
Eucalyptus decipiens subsp. adesmophloia (Edec)	
Eucalyptus eremophila (Eere)	
Eucalyptus falcata (Efal)	
Eucalyptus floctoniae (Eflo)	
Eucalyptus gardneri (Egar)	
Eucalyptus grandiflora (Egra)	
Eucalyptus incrassata (Einc)	
Eucalyptus kondininensis (Ekon)	
Eucalyptus lehmannii (Eleh)	
Eucalyptus loxophleba (Elox)	
Eucalyptus marginata (Emar)	
Eucalyptus newbeyi (Enew)	
Eucalyptus occidentalis (Eocc)	
Eucalyptus oleosa (Eole)	
Eucalyptus phaenophylla (Epha)	
Eucalyptus platypus (Epla)	
Eucalyptus pleurocarpa (Eple)	
Eucalyptus preissiana (Epre)	
Eucalyptus salmonophloia (Esal)	
Eucalyptus staeri (Esta)	
Eucalyptus wandoo (Ewan)	
Eucalyptus xanthonema (Exan)	
Flat (F)	
Granite (G)	
Granite/ E. phaenophylla (GE)	
Sand (H)	
Coastal heath (HC)	

10.4 Fitzgerald River National Park

Thirteen “mountain” peaks of the south coast, including Thumb Peak in the Barren Range were surveyed by Barrett (1996), and included a quadrat-based flora survey. Other local surveys and studies within the Fitzgerald River National Park include unpublished papers on aspects of the flora of an area near Twin Bays (Clavin 1983) and at West Mount Barren (Dodd 1977), a description of the vegetation and flora around Roes Rock (Newbey 1981), and a pre-burn survey of the Marningerup section as part of a planned fire ecology study in 1985 (Newbey 1985a).

The bryophyte species occurring in the National Park were listed by Hammersley (2002).

Newbey (1976) mapped and described the vegetation of the Tooregullup dune system north-east of Bremer Bay as part of a submission to the Mining Warden’s Court in response to a proposal for sand mining.

Hopper *et al* (1978) and McQuoid and Hopper (2002) described hybridisation occurring in *Eucalyptus* species within the National Park.

Sites in the Barren Range were used for a series of studies comparing ecosystems here with those in similar environments in South Africa (Milewski 1979, 1981a, 1982, 1983, 1984; Milewski and Cowling 1985; Cowling & Witkowski 1994; Cowling *et al* 1994).

In association with long-term studies on the biology and ecology of the Honey Possum, *Tarsipes rostratus*, in the Park, there have been several studies on aspects of the ecology and regeneration of *Banksia* species, including *B. attenuata*, *B. baxteri*, *B. media* and *B. nutans* (eg Wooller & Wooller 2001, 2002, 2003, 2004; Wooller *et al* 2002). The floral characteristics of eight Proteaceous species, and the daily patterns of nectar production and anthesis of six species, were examined by Saffer (1998, 2004) in studies of bird and mammal pollination.

Itzstein-Davy (2003a, 2003b) measured modern pollen rain using moss polsters at 5 sites within the Fitzgerald River National Park, one site in Lake Magenta Nature Reserve, 7 sites in Stirling Range National Park and 5 sites in Lesueur National Park and Coomallo Nature Reserve north of Perth, and related them to the surrounding vegetation as part of a calibration for fossil-pollen studies on Eocene, Pliocene and Quaternary sediment.

10.5 Ravensthorpe Range

Bennett (1987) investigated the ecology of vegetation associations along two transects near Mt Desmond in the Ravensthorpe Range and related the associations to geology and soils. Chapman and Newbey (1995) described fifteen vegetation types and assembled a flora list as part of a fauna survey of the Ravensthorpe Range. Craig (1995) documents 150 of the more recognisable species occurring in the Ravensthorpe area.

10.6 Other areas

Witkowski *et al* (1991) looked at the seed bank dynamics of *Banksia baxteri*, *B. speciosa* and *B. coccinea* co-occurring in patch-burnt scrub heath just to the east of the Park. The effects of plant age, granivory by cockatoos, senescence and inter-fire establishment for the three species were described. At a site further east at the edge of the Biosphere, Witkowski *et al* (1992) compared leaf demography, sclerophyll and ecophysiology for *Banksia petiolaris* and *B. baueri*.

10.7 Other ecological studies

Burbidge *et al* (1979) identified the pollen loads on Yellow-winged Honeyeaters near Quaalup in the Fitzgerald River National Park, and Wooller *et al* (1983) looked at seasonal variation in the pollen carried by Honeyeaters and Honey Possums. Other studies that looked at the use of foodplants by native fauna include Craig *et al* (2002) at Bandalup Hill and Evelegh and Cockerton (2003), who surveyed for potential pollinators of *Kunzea similis* at East Mount Barren and Bandalup Hill.

10.8 Economic uses of native plants

The conservation status and economic uses of two *Banksia* species of importance to the wildflower industry, *B. coccinea* and *B. baxteri*, were studied by Robinson (1991). Woodall and Robinson (2003) described the distribution and host species range of naturally occurring *Santalum spicatum* within several river catchments across the Biosphere and the potential for profitable revegetation, particularly of areas that may be otherwise affected by salinity. Woodall (2003) described another potentially profitable native plant, *Platysace*, which produces edible tubers. Aspects of the salt tolerance, rhizobial symbionts and nutritional value of several *Acacia* species that occur in the Ravensthorpe-Hopetoun area are discussed by Craig in her 1989 thesis, and by Craig *et al* (1990, 1991, 1991). Cannon *et al* (1969) isolated and identified tropane alkaloids with potential commercial uses from *Anthocercis* species that occur in the Fitzgerald River National Park.

10.9 Environmental degradation

There have been few detailed studies on the effects of detrimental environmental changes on plant communities or species within the Biosphere. Carey (2004) examined the effects of hydrological change on communities associated with flat-topped yate (*Eucalyptus occidentalis*) within the Gairdner River catchment and discussed the implications for management of increasingly saline landscapes. There have been some studies on the impacts of plant pathogens, including *Phytophthora*, *Armillaria* and *Cryptodiaporthe*, on plant species in the area and these are described further in Section 12 of this report. Jeffery (1999) produced an unpublished report on the distribution of Victorian Tea Tree and some other environmental weeds in the Shire of Jerramungup.

10.10 Remnant vegetation

Shepherd and True (1995) surveyed remnant mallee vegetation throughout the wheatbelt area. Native vegetation remnants in the Bremer River catchment was surveyed by Heller and Brown (1996).

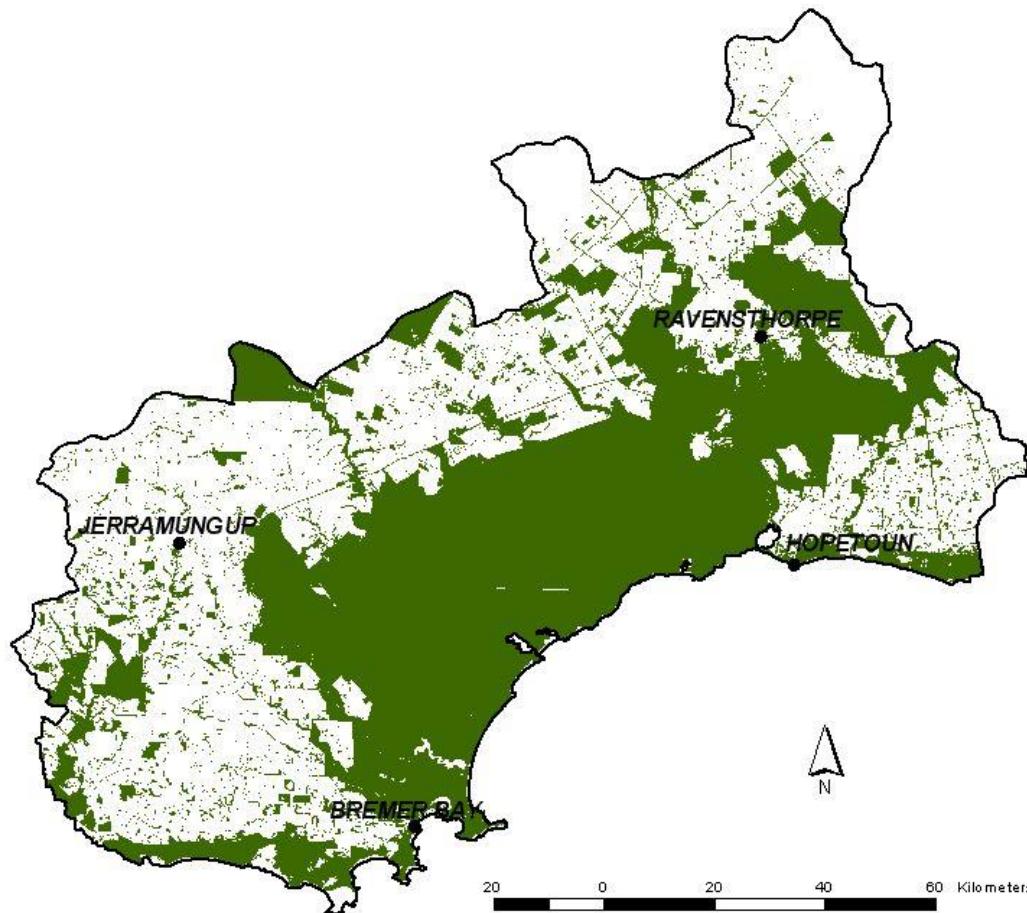
10.11 Management plans

Further information on the vegetation and flora is included in various management plans that have been developed for parts of the Biosphere. These include an integrated vegetation management plan for the Biosphere (Robinson, 1997); the management plan for the Fitzgerald River National Park (Department of Conservation and Land Management, 1991a); planning and project report documents associated with the Fitzgerald Biosphere Group's project on revegetation of the Fitzgerald River corridor (Mercer 1999, 2003a; Department of Conservation and Land Management 2003; Fitzgerald Biosphere Group 2003); management plans for the Cocanarup Timber Reserve (Forests Department 1980) and for the Corackerup Nature Reserve (Jones 1998); and various coastal management plans (eg Craig 1994a, Newbey 1988).

10.12 Aquatic and marine vegetation and flora

Congdon and McComb (1986) described the vegetation of the Wellstead Estuary and Gordon Inlet and looked at the impact of increasing salinity on species of aquatic macrophytes in Gordon Inlet. Benthic vegetation and its value as habitat for invertebrate fauna was examined by Forbes (2004) and comparisons made between Wellstead Estuary and Wilson Inlet. The series of studies on south coast estuaries by Hodgkin and Clark (1987, 1988, 1990) included discussion of the vegetation. An unpublished report by Smit *et al* (2000) of the UWA Botany Department for the Water and Rivers Commission used macrophytes to measure eutrophication status and may have included Wellstead Estuary, but the report was unable to be located during this study.

Also unavailable was a 1996 study by the Southern Western Australian Seagrass Study, compiled by Murdoch University for the Australian Heritage Commission, which was cited by Colman (1998) as identifying two areas in the Biosphere for proposed listing on the Register of the National Estate "on the basis of extensive meadows of perennial, deep-rooted species such as *Posidonia* and *Amphibolus*". The areas were Hassell Beach, and the area from Bremer Bay and Doubtful Islands Bay to Red Island.


Colman (1998) summarises the previous knowledge of the marine environment of the south coast and describes marine surveys off the Fitzgerald River National Park. Marine flora and fauna occurring in the area are listed. Data gathered from a survey of major benthic habitats between Red Island and Starvation Boat Harbour (Bancroft and Davidson 2000; report not available in this project) was used by Wernberg *et al* (2003) to compare the structure of kelp-associated macroalgal assemblages in this region with two west coast regions, Marmion Lagoon and Hamelin Bay.

NOTE: While the major botanical survey and study efforts have been mentioned here, there have been innumerable other collections throughout the Biosphere for taxonomic purposes (Green 1982, for example). The resources of this project did not allow for a collation of taxonomic studies, and databases such as the Department of Conservation and Land Management’s “Florabase” should be consulted for further information (<https://florabase.dbca.wa.gov.au/>). Similarly, information on the Biosphere’s 250¹⁵ threatened, rare or priority plant taxa can be obtained through the Department of Conservation and Land Management and the WA Herbarium.

¹⁵ Of the 250 taxa, 26 are Declared Rare Flora and 224 are Priority species. Sarah Comer (June 2005, pers comm.)

Remnant Vegetation Extent

LEGEND

- Town
- ◻ Sub-regional Boundary
- Remnant Vegetation

MAP INFORMATION

Datum: GDA 1994.
Source/Acknowledgements: Remnant vegetation extent; Departments of Agriculture and Conservation and Land Management.
Disclaimer: While all reasonable effort has been taken in the preparation of this material, the FBG and its staff accept no responsibility for any errors or omissions it may contain or for any losses sustained by any persons who relies on it.
Copyright Fitzgerald Biosphere Group Incorporated 2005.

Map 9

11. FAUNA

Knowledge of the fauna of the Biosphere is addressed through broad summaries and surveys of the south coast region, more detailed surveys or studies particularly within the Fitzgerald River National Park, and one-off surveys in defined locations often associated with mining or other development proposals. The most comprehensive and long-term studies of the ecology and behaviour of a particular species have been the work conducted over more than 20 years by Wooller and colleagues associated with Murdoch University on the honey possum (see below).

Gilfillan (2000) reviewed the available information on the south coasts' fauna in a supporting document to the South Coast Management Group's *Southern Shores* coastal planning strategy. Sanders (1996) describes a study within the Biosphere buffer and transition zones (the "zone of cooperation") that included biological surveys at ten sites.

Within the National Park, the most comprehensive surveys were conducted as part of the 1985-87 biological surveys by Chapman and Newbey (1995), which included birds (Part 5), terrestrial mammals (Part 6), amphibians and reptiles (Part 7) and inland fish (Part 8). Chapman and Newbey (1988, 1994) also surveyed parts of the National Park burnt by wildfire in 1985 to assess recolonisation by vertebrate fauna.

Other surveys in or adjacent to the National Park include the survey of mountain peaks by Barrett (1996) which describes the outcome of pit-fall trapping for vertebrates and invertebrates and use of mammalian hair tube sampling at a number of sites in the south coast region, although only opportunistic sampling of invertebrates was conducted at the one Biosphere site, Thumb Peak in the Barren Range. Taylor and Baynes (1970) described a brief survey of the Park by the University of WA's Zoology Department, conducted at the time that land release and mining proposals were threatening the Park and little documented biological information was available to support the opposition to these moves. Chapman (1988) provided a preliminary list of vertebrate fauna observed in an area then proposed as the Kybulup Reserve, on the northeastern edge of the Park. Clavin (1983) studied the flora and fauna of Twin Bays near the centre of the Park (coast between Thumb Peak and Mid Mt Barren) but this report was not able to be located during this project. Lullfitz (1994) conducted trapping at a location on (then) Crown land on the north-western edge of the Park in 1994 in an attempt to determine whether dibblers occurred in the area; no dibblers were captured but 5 mammals (the common dunnart *Sminthopsis murina*; the honey possum *Tarsipes rostratus*; bush rat *Rattus fuscipes*; the southern brown bandicoot *Isoodon obesulus* (gazetted rare); and the common house mouse) were trapped.

As part of the Western Shield project, the Department of Conservation and Land Management undertakes bi-annual (spring and autumn) fauna trapping at two locations within the Fitzgerald River National Park and in other Nature Reserves in the Biosphere. The results for the period 1997-2004 have been summarised in an unpublished report by Collins and Comer (2005).

Some ecological aspects of the fauna, including reptiles, birds and invertebrates, of the Barren Range are included in a series of papers by Milewski (1981, 1982, 1984)

and Milewski and Cowling (1985) in comparisons with the Caledon Coast in South Africa and related to climatic and edaphic influences.

Chapman and Newbey (1998) also surveyed the Ravensthorpe Range area and recorded fourteen mammals, including the tammar wallaby (*Macropus eugenii*), Short-nosed bandicoot (*Isoodon obesulus*), Western mouse (*Pseudomys occidentalis*) and Heath rat (*P. shortridgei*); 89 species of birds; and two species of inland fish. Bradby and Chapman (1987) surveyed several sites in the Range that were proposed for gravel extraction by the Main Roads Department and made recommendations on their management. Surveys on sites proposed for mining have been conducted by Biota Environmental Services and Moloch Fauna Consultants (2000), Craig (1992) and Craig and Chapman (1998) but were unavailable to this project.

Heller (1996) produced a fauna list for the Bremer River catchment based on observations during his thesis studies in the area. Leighton and Watson (1992) surveyed fauna at sites on the Corackerup Creek and the Fitzgerald River as part of a regional survey of river reserves.

11.1 Terrestrial invertebrates

As is the case for many areas, invertebrates have received limited attention compared to vertebrate species despite their integral roles in the ecological processes such as pollination, food chains, nutrient cycling and other soil processes. Invertebrates were not included in Chapman and Newbey's (1995) survey of the National Park, and while Barrett's (1996) survey of mountain peaks included invertebrate surveys of peaks in the Stirling Range, Porongorups and elsewhere, only opportunistic collections were made at Thumb Peak in the Barren Range.

Based on observations near East Mount Barren, Scott (1979) suggested that ants may play a protective role in protecting *Banksia media* flowers from attack by the larvae of Lepidoptera and Curculionidae, and hence assist in improving seed set.

Evelegh and Cockerton (2003) observed and collected insects visiting *Kunzea similis* at sites at Bandalup Hill and at East Mount Barren as part of investigations to identify potential pollinators of the species.

Milewski and Bond (1982) compared the interactions between plants and ants at sites in the Barren range with similarly sandy sites on the Caledon Coast in South Africa and suggested that the low nutrient status of soils was related to the high incidence of seed dispersal by ants. Further comparisons between the sites and the bird-ant-plant relationships are described by Milewski (1982, 1983, 1984, 1986) and Mileski and Cowling (1985).

Abensperg-Traun and Milewski (1995) compared the abundance and diversity of wood-eating and litter-harvesting termite species in burnt and unburnt vegetation in the Barren Range two years after the 1989 wildfire. Van Heurck and Abbott (2003) have reviewed the relationships between fire and terrestrial invertebrates throughout the south-west of Western Australia.

Gilfillan (2002) described the results of a study for the Department of Conservation and Land Management in which locations that could potentially harbour Gondwanan relictual invertebrates were identified through a GIS-based site assessment incorporating factors such as altitude and aspect. Sites in the Barren Range were among those identified but systematic survey has not yet occurred.

Other information on terrestrial invertebrates, including taxonomic studies (eg Jennings et al 2004) is held by the WA Museum. Several of the other fauna surveys described in this report have reported that opportunistic invertebrate samples have been lodged with the Museum, but that resources for identifying and publishing the results are very limited.

11.2 Terrestrial mammals

Of the 20 species of native terrestrial mammals that occur in the Fitzgerald River National Park (more than any other conservation reserve in south-west WA, according to Chapman and Newbey 1995b), few have been studied extensively within the Park or in its surrounds. Most work has been based on rare species, including the dibbler and the heath rat, although the continued studies on the honey possum by Ron and Sue Wooller and their students from Murdoch University over more than twenty years has yielded valuable understanding of this species, as well as better understanding of many aspects of the *Banksias* and other plant species that provide its main food source.

The pilot field studies on honey possums *Tarsipes rostratus* were initially conducted in an area further west of the Biosphere in the late 1970s (Wooller et al 1981, Renfree et al 1984, Richardson et al 1986) and identified morphological and behavioural adaptations to the seasonal availability of nectar sources, such as *Banksia nutans*. The pollen loads carried by honey possums were compared to those carried by honey-eater birds and suggestions made as to the importance of vertebrate pollinators for some species (Wooller et al 1983).

Those sites were subsequently cleared, and the Murdoch University group moved its study sites to the western end of the Fitzgerald River National Park where investigations have continued and have included studies on factors influencing the abundance of honey possums, such as annual rainfall (Wooller et al 1998). The effect of dietary constraints, particularly the availability of nectar and pollen of *Banksia* and *Dryandra* species, on reproduction rates was described by Wooller et al (1999). Wooller et al (2000) further examined the reproductive behaviour of the honey possum and the influence of nutrient and energy sources using data collected over a twelve-year period.

In her PhD thesis, Saffer (1998) examined the foraging behaviour of honey possums and nectar-feeding birds on eight species of *Banksia*, *Dryandra*, *Lambertia* and *Adenantheros* in relation to floral characteristics and temporal patterns of nectar availability. Further studies on the role of honey possums and honey eaters in pollination of *Banksia nutans* were described by Wooller and Wooller (2003).

Garavanta (1997) used mark-recapture techniques in her thesis to examine the social organisation of honey possums, including observations on their range and dispersal ability. The movement patterns were also described by Garavanta et al (2000).

Another Ph D thesis examined the effect of fire on the honey possum (Everaardt 2003, 2005) by comparing capture rates in vegetation of varying age post-fire and showed the dependence of the species on access to unburnt patches of vegetation containing mature food plants.

Friend (1992) drew on the Murdoch University work and provided an article on the potential threats to conservation of the honey possum because the spread of *Phytophthora cinnamomi* dieback and its impacts on the Proteaceae and Myrtaceae that include most of the honey possum's food sources.

Much of the work undertaken through the Murdoch University research team was also summarised for a chapter in "The Biology of Australian Possums and Gliding Possums"¹⁶ (Wooller et al 2004).

The dabbler, *Parantechinus apicalis*, was thought extinct in Western Australia after not being collected since 1884 but was re-discovered in 1967 at Cheyne Beach to the west of the Biosphere area, and then in the Jerdacuttup area in the 1970s (Woolley 1977, 1980). A recently dead specimen was found within the Fitzgerald River National Park in 1984 (Muir, 1985). Since then, surveys within the Park have consistently found dabblers in long unburnt heathland. The dabbler is gazetted as endangered and is subject to a Recovery Plan developed by the Department of Conservation and Land Management (Friend, 2004). Under WA and Australian government programs for the recovery of endangered species, surveys have continued at known locations for the species both within the Fitzgerald River National Park and in the other surviving (wild) populations on Boullanger and Whitlock Islands near Jurien Bay. Results from these studies are reported by Baczocha and Start (1997), Start (1997, 1998) and Friend (2001). Lynam (1987) completed an Honours thesis on inbreeding and juvenile dispersal in the dabbler and the Grey-bellied dunnart *Sminthopsis griseoventer* on the two islands but included a comparison with the Fitzgerald River National Park populations. The recovery program for the dabbler recommended genetic studies on the island and mainland populations and Mills and Spencer (2003) report on the characterization of polymorphic microsatellite loci used to investigate population parameters.

Friend and Friend (1992?) reported on an Endangered Species Program study on the Red-tailed Phascogale (*Phascogale calura*) which mainly reported on the results on investigations at Tutanning Nature Reserve (outside of the Biosphere area) but includes some information on the location of Phascogales near Calyerup Creek adjacent to the Fitzgerald River National Park.

Another species believed to be extinct before its rediscovery in the Fitzgerald River area is the Heath Rat *Pseudomys shortridgei*. Baynes et al (1987) reports that its rediscovery followed the 1984 finding by Keith Bradby of remains in an owl pellet of

¹⁶ R. Goldingay and S. Jackson (Eds): *The Biology of Australian Possums and Gliding Possums*. Surrey Beatty and Sons, Chipping Norton, 2004.

undetermined age, and the subsequent finding by Andrew Chapman of apparently fresh remains, also in an owl pellet, in 1987. Baynes then re-examined specimens collected by Chapman in 1983 in the Ravensthorpe Range and initially identified as *Rattus fuscipes* and determined that these were in fact *P. shortridgei*. Butler and Merrilees (1971) had previously described mammal remains, presumably from accumulated disintegrated owl pellets, found in sand dunes near the Hunter River. Reptiles, fish and shells of the land snail *Bothrimbryon* were also identified.

The Heath Rat also occurs in Victoria, and Cooper et al (2003) described and compared the eastern and western populations of this species. Quinlan et al (2004) used the Heath Rat as a case study in the use of remote sensing to identify target habitat types for trapping programs, with most of the field trial occurring in the Lake Magenta Nature Reserve to the north of the Biosphere area. The Heath Rat is the subject of an Action Plan under the Australian Government's Endangered Species Program (Department of Environment and Heritage 2001).

Papers by Kitchener and Halse (1978) and Kitchener and Coster (1981) describe reproduction by female bats (*Eptesicus regulus* and *Chalinolobus morio* respectively) from specimens in the WA Museum collection that had been collected within the Biosphere area as well as elsewhere in WA.

11.3 Birds

As for the terrestrial mammals, the available information on birds falls mainly into two types: general surveys and discussions of bird fauna, and references on individual species, generally those that are threatened or rare.

The 1985-87 biological survey of the Fitzgerald River National Park (Chapman and Newbey 1995b) includes a section describing bird surveys undertaken at various locations within the Park, including at some of the estuaries. The observations in this survey formed the basis for bird lists published for the Park. Newbey and Newbey (1987) record some aspects of bird dynamics in remnant roadside vegetation near Ongerup which, although just outside the Biosphere area includes habitats similar to many of the roadsides within the Biosphere. Burbidge's (2003) review of birds and fire in south-west Western Australia includes observations drawn from the National Park after wildfires.

As part of a series of papers comparing aspects of the ecology of the Barren Range with the Caledon Coast in South Africa, Milewski (1986) compared the bird-plant relationships.

The Western Ground Parrot *Pezoporus wallicus flaviventris* is a critically endangered species with one of the few remaining populations occurring within the Fitzgerald River National Park. Birds Australia, the World Wildlife Fund and the Department of Conservation and Land Management have all participated in recovery projects funded through the Australian and Western Australian Governments and several reports have subsequently been published on the conservation status of the species (Burbidge et al 1989, 1990; Watkins and Burbidge 1992), research and management plans (Cale and Burbidge 1993), or on surveys (eg Watkins 1985). Newbey et al (1983) produced a

short note on observations of individuals seen feeding at a roadside in the Park, and Burbidge (1998) discussed possible effects of a wildfire on the remaining population.

Other species for which the Biosphere, and the Fitzgerald River National Park in particular, provide important habitat include the Western Whipbird *Psophodes nigrogularis nigrogularis* and the Western Bristlebird *Dasyornis longirostris*, both of which are also threatened. Early reports of the occurrence of the Western Whipbird in the Park and at Hopetoun are given by Ford (1975) and Robinson (1975) respectively, and Smith and Moore (1977) reported on the occurrence of the Western Whipbird in the National Park.

Smith (1977) discussed the effects of fire, agricultural clearing and climate on six rare bird species including the Western Whipbird and Western Bristlebird, and in a later paper (Smith 1985) discussed in more detail the possible fire effects on the distribution of both the Western Whipbird and Western Bristlebird (and the Noisy Scrub Bird which occurs in the Two Peoples Bay – Waychinicup area west of the Biosphere). The ecology of the Western Whipbird was discussed by Smith (1991), although most of this paper was based on observations made at Two Peoples Bay but also includes habitat and population observations from the Fitzgerald area.

McNee (1986) reported on surveys of the Western Whipbird and Western Bristlebird throughout their range on the south coast and includes information on their historical distribution. McNee and Newbey (1998) surveyed the Western Bristlebird in parts of the Fitzgerald River National Park that had been burnt in a wildfire the previous year.

Various references to the role of birds in pollination of native plant species have already been discussed under “Vegetation and Flora” (eg Saffer 1998, 2004; Wooller et al 1983; Wooler & Woller 2001, 2002, 2004). Burbidge et al (1979) also looked at pollen loads on Yellow-winged Honeyeaters within the National Park. To the east of the Park, near Hopetoun, Witkowski et al (1991) looked at various factors affecting the seed bank dynamics of three *Banksia* species including feeding by cockatoos.

Malleefowl are found throughout the Biosphere area and most of the work on this species has been coordinated by or has otherwise involved the Malleefowl Preservation Group based at Ongerup. Harold and Dennings (1998) summarised the work of the group, including their survey work and predator control, for the period 1992-1997.

The wetlands, including the estuaries, of the Biosphere provide important habitat for several waterbird species and were included in a series of annual waterbird counts that were conducted across the south-west of the State. Reports on annual counts for the years from 1988/89 to 1991/92 have been published by the Department of Conservation and Land Management (Halse et al 1990, 1992, 1994, 1995). Halse et al (1993) reviewed some of this work and related the waterbird use to wetland characteristics.

Newbey (1996) reported on a survey and the conservation status of the Hooded Plover at both inland and coastal sites throughout Western Australia, including several sites within the Fitzgerald River National Park and some other locations in the Biosphere as part of an Australia-wide project for the RAOU.

Map 10

11.4 Introduced species

The Western Shield program extends across the National Park and the Nature Reserves in the Biosphere and, as mentioned above, Collins and Comer (2005) have summarised native fauna trapping conducted as part of the monitoring of the effects of the baiting program.

As part of the program within the National Park for the conservation of the Western Ground Parrot, Onus et al (2004) assessed the feral cat population and determined that feral cats were moderately abundant across the Park and that Bush Rats *Rattus fuscipes* were common in the diet of those trapped animals for which stomach analyses were conducted.

Twigg et al (2003) tested the longevity of 1080 egg-baits in a trial at Corackerup Nature Reserve, monitoring the uptake of baits by non-target (native) species.

11.5 Aquatic fauna

The series of reports by Hodgkin and Clark on estuaries of the south coast include fish, birds and some macroinvertebrate lists for the Wellstead, Beaufort and Gordon Inlets, and the estuaries and lagoons within the National Park as well as the Jerdacuttup Lakes (Hodgkin and Clark 1987, 1988, 1990).

Lenanton (1974) surveyed rivers and estuaries across the south coast from the Hardy Inlet to Stokes Inlet, including Beaufort Inlet, the Pallinup River, Wellstead Inlet and the Bremer River within the Biosphere, for fish and crustacean species and listed them, as well as providing some discussion of the relationship between the opening of the estuarine systems to the sea and the recruitment of commercial species into these systems. A later paper (Lenanton 1984) expands on the strategies developed by commercial and recreational fish species to adapt to the different physical, chemical and biological conditions encountered in south coast estuaries which have varying connectivity with the ocean.

Young and Potter (2002) provide a detailed study the effects of opening of the Wellstead Estuary after a long period of bar closure and of high freshwater discharge on fish species.

One of the estuarine fish species that has been most extensively studied, mostly by researchers from Murdoch University, is the Black Bream *Acanthopagrus butcheri*. Work has included a number of comparative studies between the species at sites on the west (Moore and Swan River Estuaries and Lake Clifton) and south coasts (Walpole Nornalup and Wellstead Estuaries) and related to estuary characteristics. Sarre and Potter (1999) compared reproductive biology of Black Bream, Sarre et al (2000) compared dietary composition, while Sarre and Potter (2000) looked at population characteristics such as age composition and growth rates.

Heald (1984) conducted surveys of amateur net fishing in the Wellstead and Beaufort Inlets in the summer of 1980/81 to document usage, species caught and size composition of the catch in relation to catch effort and the size of mesh used.

Bennett and George's (1994) biological study of Culham Inlet sampled invertebrates (and nutrients and vegetation) to determine whether opening of the bar for a six-week period in 1993 had changed the status of the inlet's biology.

Forbes' (2004) thesis compared the invertebrates within four southwest estuaries with the major discussion comparing the ecologies of Wellstead Estuary and Wilson Inlet, and the roles played in these systems by benthic vegetation and benthic invertebrate fauna.

There are very few papers on the fauna of the rivers and wetlands, other than estuaries, of the south coast. Chapman (2003) studied the biology of the Spotted Minnow *Galaxias maculatus* at several sites on the south coast, including the Jerdacutup River. Aquatic macroinvertebrates have been used as part of an Australia-wide monitoring of river health (AusRivAS), and several of the sites occur within the Biosphere area. Sutcliffe (2003) provides a further analysis of some of the AusRivAS information to discuss the conservation status of aquatic insects. Further information on the Monitoring River Health program can be found on the website <http://eriss.erin.gov.au/water/rivers/monitoring.html>

The River Action Plans for the Bremer, Phillips and Jerdacutup Rivers (Water and Rivers Commission 2001; Department of Environment 2003, 2004) and the report on "State of the Waterways of the Fitzgerald River Catchment" (Water and Rivers Commission 2003) provide some information on aquatic macroinvertebrate monitoring in these waterways.

11.6 Marine fauna

The only marine flora and fauna survey of the south coast identified in the project was by the Department of Conservation and Land Management in 1996 (Colman 1998) which surveyed areas of estuaries and coasts adjacent to terrestrial nature reserves, to determine their suitability for reservation for marine conservation. An area adjacent to the Fitzgerald Biosphere Reserve was surveyed and benthic habitats mapped.

The waters off the south coast of WA, including those offshore from the Biosphere area, support diverse marine fauna including whales, Fur Seals and Sea Lions. The Doubtful Islands are particularly important sites for the latter two species, while the waters around them are used by Southern Right Whales for calving.

Abbott (1979) summarised the past and present distribution and status of Sea Lions and Fur Seals in WA. Gales (1990) reported on the abundance of Australian sea lions *Neophoca cinerea* on islands along the south-western and southern coasts of Western and South Australia, including the Doubtful Islands. Gales et al (1994) discussed the abundance and the breeding cycle of Australian sea lions based on their studies on islands in WA and SA between 1987 and 1992.

Shaughnessy et al (1994) reported on the distribution and abundance of the New Zealand fur seal *Arctocephalus forsteri* based on surveys on islands in WA and SA between 1987 and 1990. Gales et al (2000) discussed apparent increases in the population of New Zealand fur seals in WA.

Bannister (1990, 2001, 2002) reports on aerial surveys of Southern Right Whales off the south coast and the assembly of a photo-identification database by the WA Museum. Holst (undated) discussed possible reasons for the Doubtful Islands being one of two major calving areas for this species (the other area is Israelite Bay), including the orientation of the coastline relative to prevailing winds.

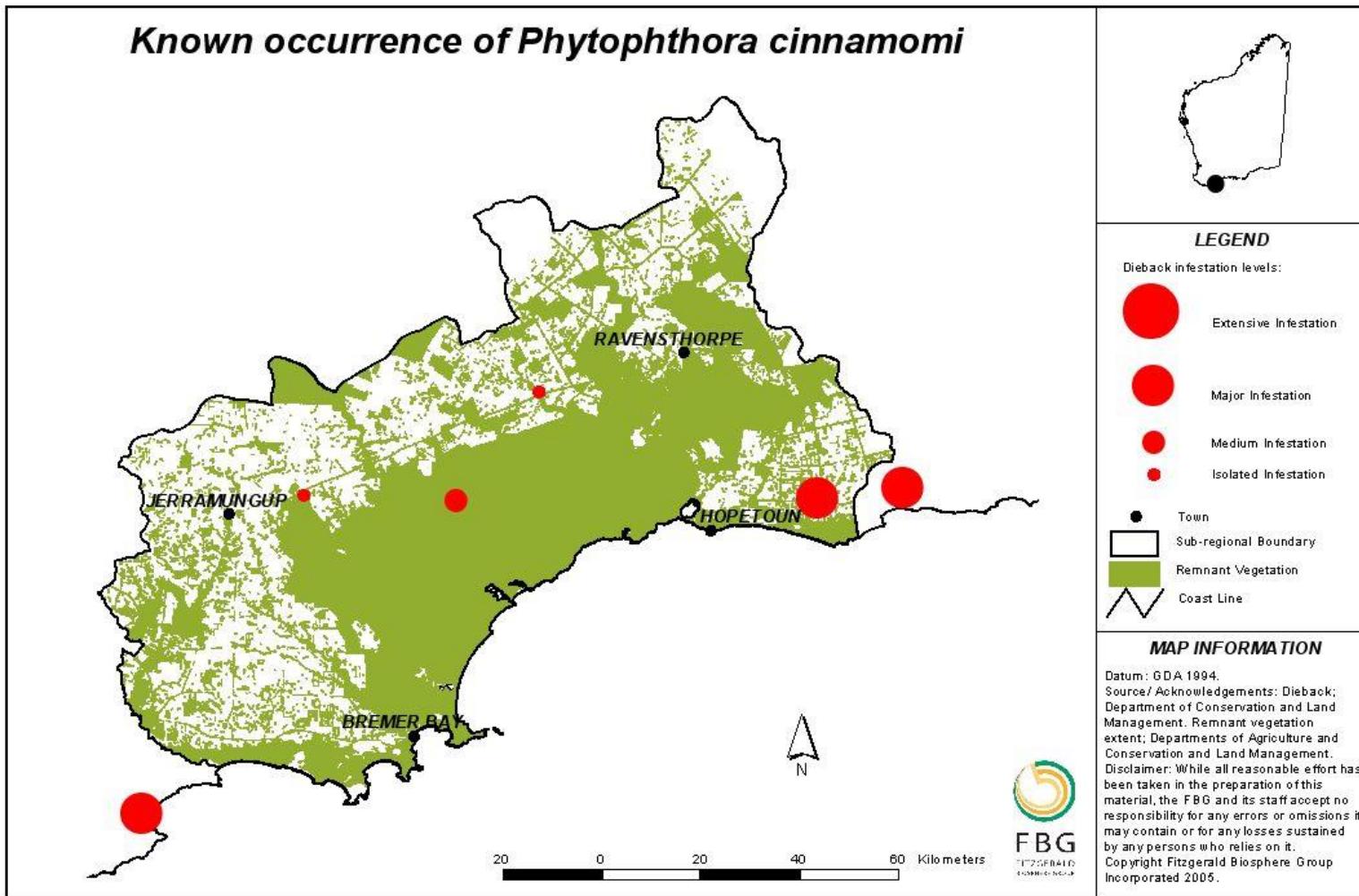
12. PLANT DISEASES

Shearer (1994) reviewed the major plant pathogens occurring in native ecosystems in south-western WA by drawing on extensive databases, reports and published information. *Phytophthora cinnamomi* poses one of the greatest threats to the biodiversity of the Fitzgerald Biosphere area but is only one of the plant pathogens occurring in the area. Others that have been identified as potential threats to some species include other *Phytophthora* species (eg *P. megasperma*), *Diplodina*, *Armillaria luteobubalina* and *Cryptodiaporthe melanocraspeda*.

An occurrence of *Phytophthora cinnamomi* on the Bell Track is the subject of monitoring and management measures, including phosphite application. Other *P. cinnamomi* infection sites within the South Coast are currently being mapped as part of a Natural Heritage Trust funded project through SCRIPT. Grant and Barrett (2003) provide an overview of the distribution and impact of *P. cinnamomi* across the south coast, with particular attention to the impacts within the National Parks and implications for conservation of threatened species and communities. Barrett (1999, 2003) discusses the results of monitoring aerial application of phosphite in the Stirling Range National Park and at the Bell Track location in the Fitzgerald River National Park.

Shearer and Crane (2003) looked at the influence of soil types from within the National Park on the mortality of *Banksia baxteri* infected with *P. cinnamomi*.

The threats from *P. cinnamomi* are not only to conservation of flora species; fauna is also at risk, particularly those species that are highly dependent on the nectar and pollen production from the Proteaceae. Friend (1992) describes the risks to the Honey Possum, for example. Robinson (1991) reviewed the conservation status and economic value of *Banksia coccinea* and *B. baxteri*, two species highly prized by the wildflower industry but potentially threatened by uncontrolled collection and disease spread.


Glevan Dieback Consultancy Services (2000) assessed areas near Ravensthorpe for the presence of *P. cinnamomi* for the Ravensthorpe Nickel Project. The Department of Conservation and Land Management has had a number of projects funded through the Department of Environment and Heritage (formerly Environment Australia), some of

which have used the Bell Track infestation as one of their study sites (Department of Conservation and Land Management 1997). The Department also produces 5-year protection plans for the South Coast outlining actions to be taken to contain or prevent further spread of the disease (e.g. Department of Conservation and Land Management 1994).

Phytophthora megasperma has been isolated around East Mt Barren, in western parts of the Park (Pt Anne, West Mt Barren and Quaalup) and near Hopetoun to the east of the National Park (Bellgard et al 1994) and has high impact on *Banksia speciosa* as well as some other *Banksia* and *Dryandra* species (Bellgard et al 2004).

Banksia coccinea is also susceptible to cankers caused by *Cryptodiaporthe melanocraspeda*. Shearer et al (1995) sampled dead and dying *B. coccinea* across its range, including sites in the National Park, and isolated several types of fungus from them but attributed the deaths to *C. melanocraspeda*. Shearer et al (1997) assessed sites along the coast for *Armillaria luteobubalina* and found that this pathogen resulted in changes in community structure and increased area of bare ground in disease centres, and that threatened taxa killed by the fungus include the rare and endangered *Banksia brownii*, *B. occidentalis* subsp *formosa* and *B. verticillata*. The relative susceptibilities of plants in coastal dune vegetation to killing by *A. luteobubalina* is described by Shearer et al (1998).

Known occurrence of *Phytophthora cinnamomi*

Map 11

13. FIRE

References addressing fire and its effects on the biota of the Fitzgerald Biosphere are, for the most part, either part of wider reviews into the fire relationships of systems within south-western Australia, or opportunistic studies and surveys post-wildfire.

A recent publication reviewing knowledge on several aspects of fire and its impacts on ecosystems, *Fire in ecosystems of south-west Western Australia: Impacts and management* (Abbott and Burrows Eds, 2003) includes references to the Fitzgerald area in relation to birds (Burbidge 2003), terrestrial invertebrates (van Heurck and Abbott 2003), the fire environment (McCaw and Hanstrum 2003) and the pre-European fire history (Hassell and Dodson 2003).

McCaw, Maher and Gillen (1992) provided a detailed description of the fire weather conditions and fire behaviour of the wildfires that occurred in the Park in December 1989.

Hassell's (2000) thesis examined historical records, current vegetation structures, monitoring of post-fire recovery in marked plots, and charcoal and pollen preserved in estuarine sediments, to determine the changes that may have occurred in fire frequencies within the National Park. His thesis included discussion of some of the habitat requirements for flora and fauna species and consequent fire interval preferences. Everaardt's (2003) thesis provides detailed examination of the impacts of fire on one species, the Honey possum *Tarsipes rostratus*, and like Hassell, found that fire intervals in excess of 20 years favoured habitat for fauna.

Chapman and Newbey (1988, 1994) monitored areas burnt by wildfires in 1985 during the first year of the Fitzgerald River National Park Biological Survey (Chapman and Newbey 1995) for both recolonization by fauna and regeneration of flora. McNee and Newbey (1998) surveyed for Western Bristlebird populations in areas burnt by wildfire in 1997.

Witkowski et al (1991) looked at the seed bank dynamics of three *Banksia* species (*B. coccinea*, *B. baxteri* and *B. speciosa*) in patch burnt scrub heath 10 and 21 years post-fire and studied the roles of how plant age, seed removal by cockatoos and senescence affect establishment.

The abundance and diversity of wood-eating and litter-harvesting termite species in burnt and unburnt vegetation near the Barrens was compared by Abensperg-Traun and Milewski (1995). Burbidge (1998) suggested some impacts that a wildfire may have had on the Park's Western Ground Parrot population.

Bennett (1987) studied vegetation structures in relation to soil characteristics in the Ravensthorpe Range and had fire burn several of the vegetation quadrats during the course of the study. Her thesis includes monitoring of recovery and recruitment post-fire in these plots.

The Friends of the Fitzgerald River National Park hosted two fire symposia, at Gairdner and at Ravensthorpe, in 2002 and recorded the presentations and discussion sessions on two audio CDs (Friends of the FRNP, 2002).

REFERENCES

Note: photocopies of these references have been stored at the Gondwana Link's Albany office.

Abbot, I 1979, 'The past and present distribution and status of Sea Lions and Fur Seals in Western Australia', *Records of the Western Australian Museum*, vol. 7, no.4, pp.375-390.

Abbott I & Burbidge AA 1995, 'The occurrence of mammal species on the islands of Australia: a summary of existing knowledge', *CALM Science* , vol. 1, no.3, pp.259-324.

Abensperg-Traun M & Milewski AV 1995, 'Abundance and diversity of termites (Isoptera) in unburnt versus burnt vegetation at the Barrens in Mediterranean Western Australia', *Australian Journal of Ecology*, vol. 20, pp.413-417.

Abensperg-Traun M & Perry DH 1998, 'Distribution and characteristics of mound-building termites (Isoptera) in Western Australia', *Journal of the Royal Society of Western Australia* , vol. 81, 191-200.

Anderson C & Cribb A 1994, 'Fish, floods and tourism at Culham', *Western Fisheries*, vol. , 26-27.

Aplin T.E.H 1971, 'A preliminary account of the vegetation of the Fitzgerald River National Park, Western Australia', Unpublished (DRAFT) manuscript. *NB Subsequently published under Aplin & Newbey 1990.* ,

Aplin TEH and Newbey KR 1990a, 'The vegetation of the Fitzgerald River National Park, Western Australia', *Kingia*, vol. 1, no.2, pp.141-153.

Aplin TEH and Newbey KR 1990b, 'The Flora of the Fitzgerald River National Park, Western Australia.' *Kingia*, vol. 1, no.2, 155-194.

Australian Heritage Council 'Australian Heritage Database'
<http://www.deh.gov.au/heritage/ahdb/index.html>

Baczocha N & Start AN 1997, 'Status and ecology of the dibbler, (*Parantechinus apicalis*) in Western Australia. Annual Report 1996. Dept of Conservation and Land Management. Unpublished report to Environment Australia

Bancroft KP & Davidson JA 2000, 'Biological data from a survey of the major marine benthic habitats of the South Coast between Red Island and Starvation Boat Harbour (23 March - 2 April 1998)', Unpublished report, Marine Conservation Branch. Department of Conservation and Land Management, Perth

Bancroft KP, Deeley DM and Paling EI 1997, 'South Coast Terrestrial and Marine Reserve Integration Study. A review of estuaries and their catchments between Broke Inlet and Israelite Bay', Report to the Marine Conservation Branch, Nature Conservation Division, Dept Conservation and Land Management. Marine and Freshwater Research Association, Murdoch University MAFRA Report No 97/9 Sept 1997

Bannister JL 1990, 'Southern Right Whales off Western Australia', Report of the International Whaling Commission, vol. -12, pp. 279-288.

Bannister JL 2001, 'Status of southern right whales (*Eubalaena australis*) off Australia', *Journal of Cetacean Research and Management*, vol. -2, pp. 103-110.

Bannister JL 2002, 'Southern Right Whale aerial survey and photoidentification, Southern Australia, 2001 calving season', Unpubl report under agreement between Commonwealth of Australia and WA Museum,

Bannister JL 2003, 'Southern Right Whale Aerial Survey and Photoidentification, Southern Australia, 2002', Final Report, to 1 March 2003, on work done under the Agreement signed between the Commonwealth of Australia and the Western Australian Museum, on 31 August 2002. Unpublished Report.

Barrett S 1996, 'A biological survey of mountains in Southern Western Australia', Unpublished report, Department of Conservation and Land Management South Coast Regional Office, Albany in conjunction with Australian Nature Conservation Agency National Reserves System Cooperative Program (Project No AW03)

Barrett S 1999, 'Aerial applications of phosphite in the South Coast Region of Western Australia', Unpublished report by the Department of Conservation and Land Management to the Threatened Species and Communities Unit, Biodiversity Group, Environment Australia

Barrett S 2003, 'Monitoring of aerial phosphite applications for the control of *Phytophthora cinnamomi* in the Albany District.', In: "Phytophthora in Forests and Natural Ecosystems". 2nd International IUFRO Working Party 7.02.09 Meeting, Albany, W. Australia 30th Sept-5th Oct 2001, pp.132-137. Murdoch University Print.

Barrett S and Gillen K 1997, 'Mountain protected areas of South Western Australia', Parks, vol. 7, no.1, 35-42.

Baynes A, Chapman A and Lyman AJ 1987, 'The rediscovery, after 56 years, of the Heath Rat *Pseudomys shortridgei* (Thomas 1907) (Rodentia: Muridae) in Western Australia', Records of the Western Australian Museum, vol. 13, no.2, pp.319-322.

Beard JS 1972a, 'Vegetation Survey of Western Australia: Sheet No S1 50-8-12 Bremer Bay', Vegmap Publications, Sydney.

Beard JS 1972b, 'Vegetation Survey of Western Australia: Sheet No S1 50-8 Newdegate', Vegmap Publications, Sydney.

Beard JS 1979, 'The vegetation of the Ravensthorpe area of Western Australia. Map and Explanatory Memoir. 1:250,000Series.', Veg Map Publications, Perth.

Beard JS 1999, 'Evolution of the river systems of the south-west drainage division, Western Australia', Journal of the Royal Society of Western Australia, vol. 82, 147-164.

Bellgard S, Crane C & Shearer B 2003, 'Variation exhibited by isolates of *Phytophthora megasperma* causing seedling and tree decline in south-west Australian coastal National Parks.' In :"Phytophthora in Forests and Natural Ecosystems". 2nd International IUFRO Working Party 7.02.09 Meeting, Albany, W. Australia 30th Sept-5th Oct 2001. Murdoch University Print. pp.144-147

Bellgard S, Shearer B, Crane C & Smith B 1994, 'The Control and Management of *Phytophthora megasperma* in the native plant communities of Western Australia', Unpublished. Project 4 Annual Report. Department of Conservation and Land Management

Bennett EM 1987, 'Biological relationships in the vegetation near Mt Desmond, Ravensthorpe Range, Western Australia', Thesis (Ph D), University of Western Australia

Bennett K & George K 1994, 'Culham Inlet Biological Study', Unpublished report. Southern Coastal Research Biological and Environmental Consultants

Biota Environmental Services and Moloch Fauna Consultants 2000, 'Ravensthorpe Nickel Project Fauna Survey 2000', Sinclair Knight Mertz RNP-REP-227. Dec 2000

Biota Environmental Services 2001, 'Review of the RNO Fauna Monitoring Program', Unpublished report produced for RNO. RNO document number 7-1139

Boulet, F 2004, 'Mycorrhizal symbiosis as a strategy for survival in ultramafic soils', Thesis (Ph D), University of Western Australia

Bradby K 1989, 'A Park in Perspective', Unpublished report for Fitzgerald River National Park Association

Bradby K and Chapman A 1987, 'Biological data and recommendations for proposed gravel extraction in the Ravensthorpe Range, Western Australia'. An assessment for the Main Roads Department of Western Australia.

Brown N 1998, 'A survey of native plants in the Yarramouup Corporation land surrounding the Jerramungup Saleyards', Unpublished.

Burbidge A 1987, 'Heath rat found at Fitzgerald', CALM News, vol. 3, no.27, pp.1.

Burbidge A 1998, 'Possible effects of recent fires on Western Ground Parrots ', Eclectus, Birds Australia Parrot Association, Melbourne, vol. 4, pp.15-16.

Burbidge AA 2004, *Threatened animals of Western Australia*. Department of Conservation and Land Management.

Burbidge AH 2003, 'Birds and fire in the Mediterranean climate of south-west Western Australia', In: Fire in ecosystems of south-west Western Australia: Impacts and management. Eds I Abbott & N Burrows, pp.321-347. Backhuys Publishers, Leiden, The Netherlands

Burbidge AH Hopper SD and Coates DJ 1979, 'Pollen loads on Yellow-winged Honeyeaters near Quaup, Western Australia', Western Australian Naturalist, vol. 14, no.5, pp.126-128.

Burbidge AH, McNee S, Newbey B and Rolfe JK 1990, 'Supplementary report: Project 118 - Conservation of the Ground Parrot in Western Australia.', Unpublished supplementary report to World Wildlife Fund (Australia)

Burbidge AH, Watkins D & McNee 1989, 'Conservation of the Ground Parrot in Western Australia', Final report to the World Wildlife Fund (Australia). WWF Australia Unpublished Report

Butler, WH and Merrilees D 1971, 'Remains of *Potorous platyops* (Marsupialia-Macropodidae) and other mammals from Bremer Bay, Western Australia', Journal of the Royal Society of Western Australia , vol. 54, no.2, pp.53-58.

Byrne M 2002, 'Phylogenetics and the conservation and utilisation of Acacia in Western Australia', Conservation Science Western Australia, vol. 4, no.3, 10-18.

Cale P and Burbidge AH 1993, 'Research plan for the Western Ground Parrot, Western Whipbird and Western Bristlebird', Unpublished report of Australian National Parks and Wildlife Service. ANPWS Endangered Species Program Project No 228

Cannon JR, Joski KR, Meehan GV & Williams JR 1969, 'The tropane alkaloids from the Western Australian *Anthocercis* species', Australian Journal of Chemistry, vol. 22, pp. 221-227.

Carey, Michelle 2004, 'The effect of hydrological change on plant communities associated with flat-topped yate (*Eucalyptus occidentalis* Endl.), and the implications for management of saline landscapes', Thesis (Ph D), Murdoch University

Chaplin JA, Baudains GA, Gill HS, McCulloch R & Potter IC 1998, 'Are assemblages of black bream (*Acanthopagrus butcheri*) in different estuaries genetically distinct?', International Journal of Salt Lake Research, vol. 6, 303-321.

Chapman A 1983, 'Distribution and abundance of *Leucopogon* spp aff *bossiaeae* in the south of Coujinup Creek land release area, Ravensthorpe Shire: Nature conservation values.', WA Dept of Fisheries and Wildlife Unpublished Report

Chapman A 1985a, 'A fire fauna study in Fitzgerald River National Park February 1985', Unpublished report (Draft)

Chapman A 1985b, 'Some parameters of river water quality in Fitzgerald River National Park.', A report for the Western Australian Heritage Committee by the Fitzgerald River National Park Association (Inc). Unpublished

Chapman A 1988a, 'A preliminary list of vertebrate fauna from the proposed Kybulup Reserve', Unpublished report for Friends of Fitzgerald River National Park Association.

Chapman A 1988b, 'An assessment of the threat to vertebrate fauna of un-capped drill holes in the Ravensthorpe Range.' A pilot project for the Mines Department of Western Australia. March 1988. Unpublished.

Chapman A 1995a, 'A biological survey of the Fitzgerald area, Western Australia. Part 6: Terrestrial mammals', CALM Science Supplement, vol. 3, pp.83-94.

Chapman A 1995b, 'A biological survey of the Fitzgerald area, Western Australia. Part 7: Amphibians and reptiles', CALM Science Supplement, vol. 3, pp.95-110.

Chapman A 1995c, 'A biological survey of the Fitzgerald area, Western Australia. Part 8: Inland fish', CALM Science Supplement, vol. 3, pp.111-112.

Chapman A 2000, 'Ravensthorpe Nickel Project. Comet Resources NL. Fauna Management Plan, Year one 1999- 2000', Unpublished report for Ravensthorpe Nickel Project. RNO document number 7-949

Chapman A 2003, 'Biology of the Spotted Minnow *Galaxias maculatus* (Jenyns 1842) (Pisces: Galaxiidae) on the South Coast of Western Australia.', Thesis (M. Phil.), Murdoch University, pp.118pp.

Chapman A and Newbey KR 1987a, 'A biological survey of the Fitzgerald area, Western Australia. Final Report Part 1', Final Report June 1987, Part 1. Fitzgerald River National Park Association Inc and Heritage Committee of Western Australia, *Republished as Chapman & Newbey (1995)*

Chapman A & Newbey KR 1987b, 'A biological survey of the Fitzgerald Area, Western Australia. Final Report Part 2: Site description and rainfall data', Final Report June 1987, Part 2. Fitzgerald River National Park Association Inc and Heritage Committee of Western Australia

Chapman A & Newbey KR 1988, 'A recolonization and revegetation survey following 1985 wildfire, Fitzgerald River National Park, Western Australia. (Third survey 1987)', Report to Department of Conservation and Land Management. Jan 1988

Chapman A and Newbey KR 1994, 'Revegetation and recolonization by vertebrates of Fitzgerald River National Park, Western Australia following 1985 wildfire.', Landnote, Department of Conservation and Land Management, vol. 1

Chapman A and Newbey KR 1995a, 'A vertebrate fauna survey and some notes on the vegetation of the Ravensthorpe Range, Western Australia', CALM Science, vol. 1, no.4, pp.465-508.

Chapman A and Newbey KR 1995b, 'A biological survey of the Fitzgerald area, Western Australia.', CALM Science Supplement, vol. 3.

Christensen PES, Wardell-Johnson G & Kimber P 1985 Birds and fire in southwestern forests. pp 291-299 In: Birds of eucalypt forests and woodlands: ecology, conservation, management. A. Keast, H.F. Recher.

Clarke E de C and Phillips TH 1953, 'Physiographic and other notes on a part of the south coast of Western Australia', Journal of the Royal Society of Western Australia, vol. 37, pp. 57-90.

Clarke E de C and Phillips TH 1955, 'The Plantagenet Beds of Western Australia', Journal of the Royal Society of Western Australia, vol. 39, pp 19-26

Clarke EC, Phillips TH and Prider RT 1954, 'The Precambrian geology of a part of the south coast of Western Australia', *Journal of the Royal Society of Western Australia*, vol. 38, pp.1-64.

Clarke JDA, Gammon PR, Hou B & Gallagher SJ 2003, 'Middle to Upper Eocene stratigraphic nomenclature and deposition in the Eucla Basin', *Australian Journal of Earth Sciences*, vol. 50, pp.231-248.

Clavin B 1983, 'A study of the flora and fauna of an area near Twin Bays, Fitzgerald River National Park', Unpublished report

Cockbain AE 1968, 'The stratigraphy of the Plantagenet Group, Western Australia', *Western Australian Geological Survey Annual Report*, pp.61-63.

Cockbain AE and Graaf van den WJE 1973, 'The geology of the Fitzgerald River lignite', *Western Australian Geological Survey Annual Report*, pp.81-92.

Cockerton G & Craig GF 2000, 'Flora and vegetation surveying for Ravensthorpe Nickel Project, September-October 2000', Unpublished report for Sinclair Knight Mertz, Perth and Ravensthorpe Nickel Operations Pty Ltd Perth. RNO document number 7-1045.

Cockerton G & Craig GF 2001, 'Regional surveys for *Kunzea similis*, *Eucalyptus purpurascens* ms; options for establishment trials and genetic delineation of provenance.', Unpublished report for Sinclair Knight Mertz, Perth and Ravensthorpe Nickel Operations Pty Ltd Perth.

Cockerton G & Evelegh N 2002, 'Vegetation mapping and flora survey E74/208 - Shoemaker-Levy South.', Unpublished report prepared by Landcare Services Pty Ltd.

Cockerton G, Evelegh N & Craig GF 2002, 'Flora and Vegetation Surveys October - November 2001, Ravensthorpe Region.' Unpublished report prepared by Landcare Services Pty Ltd. RNO document number 7-1356.

Collins P & Comer S (2005) Western Shield Fauna Monitoring, Fitzgerald River National Park 1997-2004. Unpublished summary report prepared for Fitzgerald Biosphere Biological Review. March 2005. Department of Conservation and Land Management, Albany.

Colman JG 1997/98, 'Wonders of our southern seas: a marine survey of the Fitzgerald region', *Landscape*, vol. 13, no.2, pp.28-35.

Colman JG 1997, 'South Coast Terrestrial and Marine Reserve Integration Study. Biological survey of the major benthic habitats of the south coast (Starvation Boat Harbour - Groper Bluff).' Marine Conservation Branch. Department of Conservation and Land Management, Fremantle, Western Australia.

Colman JG 1998, 'South Coast Terrestrial and Marine Reserve Integration Study.', Project No 713, National Reserve System Cooperative Program, Final Report: MRIP/SC-10/1997. A collaborative project between CALM Marine Conservation Branch and South Coast Region, funded by Environment Australia.

Congdon RA and McComb AJ 1986, 'Aspects of the hydrology and plant ecology of two normally-closed estuaries in the Bremer Bay region on the south coast of Western Australia', *Wetlands (Australia)*, vol. 6, no.1, pp.23-32.

Cooper NK, 'Identification of *Pseudomys albocinereus*, *P. occidentalis*, *P. shortridgei*, *Rattus Rattus* and *R. fuscipes* using footpad patterns.' 279-283.

Cooper NK, Bertozzi T, Baynes A & Teale RJ 2003, 'The relationship between eastern and western populations of the Heath Rat, *Pseudomys shortridgei* (Rodentia: Muridae)', *Records of the Western Australian Museum*, vol. 21, pp. 367-370.

Cowling RM & Witkowski ETF 1994, 'Convergence and non-convergence of plant traits in climatically and edaphically matched sites in Mediterranean Australia and South Africa.' Australian Journal of Ecology, vol. 19, pp.220-232.

Cowling RM, Witkowski ETF, Milewski AV & Newbey KR 1994, 'Taxonomic, edaphic and biological aspects of narrow plant endemism on matched sites in Mediterranean South Africa and Australia', Journal of Biogeography, vol. 21, no.6, pp.651-664 .

Craig GF 1989, 'Salt tolerant *Acacias* of Western Australia and their rhizobial symbionts', Thesis (Ph D), Department of Botany, University of WA.

Craig GF 1991, 'Powell Point Draft Site Plan', Unpublished report for Dept of Planning and Urban Development, Perth.

Craig GF 1992a, 'Hopetoun Foreshore Management Plan ', Dept of Planning and Urban Development, Perth.

Craig GF 1992b, 'Flora and fauna survey: mining lease M74/63', Unpublished report to Mt Iron Mining, Ravensthorpe. Sept 1992.

Craig GF 1994a, 'Beaufort Inlet to Wellstead Estuary Coastal Plan. Stage 2 Management of the coastal zone - Jerramungup Shire', Shire of Jerramungup WA.

Craig GF 1994b, 'John Cove: Proposed site development plan', (Unpublished?) report for Shire of Jerramungup WA.

Craig GF 1995, 'Native plants of the Ravensthorpe region', Ravensthorpe Wildflower Show.

Craig GF 1996, 'Shire of Ravensthorpe: Coastal Site Development Plans 1996', Shire of Ravensthorpe WA.

Craig GF 1997, 'Shire of Ravensthorpe: Coastal Site Development Plans 1997', Shire of Ravensthorpe WA.

Craig GF 1998a, 'Ravensthorpe Nickel Project: Fitzgerald River National Park, Survey for Priority Flora and Flora of Special Interest', Unpublished report to Comet Resources NL, Perth. Jan 1999.

Craig GF 1998b, 'Ravensthorpe Nickel Project: Bandalup Hill, Ravensthorpe Range, East Mt Barren - Survey for Rare and Priority Flora and Flora of Special Interest', Unpublished report to Comet Resources NL, Perth.

Craig GF 1998c, 'Ravensthorpe Nickel Project: Mason Bay Road - Survey for Declared Rare and Priority Flora', Unpublished report to Comet Resources NL, Perth. June 1998.

Craig GF 1998d, 'Hopetoun residential/industrial development project: survey for rare and endangered flora', Unpublished report to Dept of Land Administration, Midland.

Craig GF 1999a, 'Ravensthorpe Nickel Project Joint Venture: Mason Bay Road North, Vegetation and Flora survey', Unpublished report to Comet Resources NL, Perth. May 1999.

Craig GF 1999b, 'RAV 8, Tectonic Resources NL, Vegetation and flora survey', Unpublished report to Hart, Simpson & Assoc, Shenton Park. Oct 1999.

Craig GF 1999c, 'Ravensthorpe Nickel Project Joint Venture: Shoemaker-Levy, Vegetation and Flora survey', Unpublished report to Comet Resources NL, Perth. Dec 1999.

Craig GF 2000, 'South Coast Regional Coastal Strategy. Vegetation and flora of the south coast - a review', South Coast Management Group under Coasts and Clean Seas and Natural Heritage Trust Programs.

Craig GF 2001a, 'Hopetoun Townsite residential development project: vegetation and flora survey', Unpublished report to Dept of Land Administration, Midland. Jan 2001.

Craig GF 2001b, 'Hopetoun: flora survey', Unpublished report to Water Corporation, Leederville. October 2001.

Craig GF 2002a, 'Kundip Talc, Exploration licence E74/193: Survey for declared rare and priority flora', Unpublished report to Kundip Talc, Merredin.

Craig GF 2002b, 'Ravensthorpe Water Source Upgrade: vegetation monitoring programme', Unpublished report to Water Corporation, Great Southern Region, Albany.

Craig GF 2003a, 'Salinity Action Plan: Gravel Pit monitoring - Shire of Ravensthorpe', Unpublished report to Dept of Conservation and Land Management, Ravensthorpe.

Craig GF 2003b, 'Floater Road Gravel Pit: declared rare and priority flora survey.', Unpublished report for Shire of Ravensthorpe. May 2003.

Craig GF 2003c, 'Hopetoun Wastewater Treatment Plant: Vegetation and flora', Unpublished desktop report to GHD Management Engineering Environment, Perth. November 2003.

Craig GF 2003d, 'Hopetoun Wind Turbine Interconnector: vegetation and flora survey', Unpublished report for Western Power, Perth. February 2004.

Craig GF 2004a, 'Kundip Mining Leases M74/41, 51, 53 & 135 and P74/153: vegetation and flora survey', Unpublished report for Tectonic Resources NL, Subiaco. April 2004.

Craig GF 2004b, 'Kundip Haul Road: declared rare and priority flora survey', Unpublished report for Tectonic Resources NL, Subiaco. May 2004.

Craig GF, Atkins CA & Bell DT 1991, 'Effect of salinity on growth of four strains of Rhizobium and their infectivity and effectiveness on two species of *Acacia*', *Plant and Soil* , vol. 133, pp. 253-262.

Craig GF, Bell DT & Atkins CA 1990, 'Response to salt and waterlogging stress of ten taxa of *Acacia* selected from naturally saline areas of Western Australia', *Australian Journal of Botany* , vol. 38, pp.619-630.

Craig GF, Bell DT & Atkins CA 1991, 'Nutritional characteristics of selected species of *Acacia* growing in naturally saline areas of Western Australia', *Australian Journal of Experimental Agriculture*, vol. 31, pp.341-345.

Craig, G, Burkin B, and Van Stevinck A 1984, 'Ravensthorpe District Draft Coastal Management Plan', Dept of Conservation and Environment, Perth WA, Bulletin 152.

Craig GF & Carmen-Brown 1994, 'Doubtful Islands Area Coastal Plan. Stage 1 Management of the Coastal Zone - Jerramungup Shire', Dept of Planning and Urban Development and Shire of Jerramungup.

Craig GF and Chapman A 1998, 'Ravensthorpe Nickel Project. Comet Resources NL. Vegetation, flora and fauna survey', Unpublished report to ICF Kaiser Engineers, Perth. April 1998.

Craig GF, Cockerton G & Evelegh N 2002, 'Important foodplants for small marsupials and birds at Bandalup Hill and surrounds', Unpublished report for BHP-Billiton Ravensthorpe Nickel Project ????,

Darragh TA & Kendrick GW 2000, 'Eocene bivalves and gastropods from the Pallinup Siltstone, Western Australia, with new records from the Eocene and Oligocene of southeastern Australia', *Proceedings of the Royal Society of Victoria* , vol. 112, no.1, pp.17-58.

Department of Conservation and Land Management 'Florabase' <http://florabase.calm.wa.gov.au/>

Department of Conservation and Land Management 1991a, 'Fitzgerald River National Park. Management Plan 1991-2000. Management Plan No 15', Management Plan No 15, Dept of Conservation and Land Management and National Parks and Nature Conservation Authority, Perth, Western Australia.

Department of Conservation and Land Management 1991b, 'Fitzgerald River National Park. Analysis of public submissions. Management Plan No 15', Dept of Conservation and Land Management and National Parks and Nature Conservation Authority, Perth, Western Australia.

Department of Conservation and Land Management 1992, 'Regional Management Plan 1992-2002. South Coast Region', Management Plan No 24, Dept of Conservation and Land Management, National Parks and Nature Conservation Authority and Lands and Forests Commission, Western Australia.

Department of Conservation and Land Management 1994a, 'A plan for the protection of South Coast vegetation from dieback. Number 3 1994-98', Department of Conservation and Land Management, South Coast Region,

Department of Conservation and Land Management. 1994b, 'A representative marine reserve system for Western Australia. Part V. Marine reserves on the south coast', Report of the Marine Parks and Reserves Selection Working Group. Dept of Conservation and Land Management Perth WA.

Department of Conservation and Land Management 1997, 'Control of *Phytophthora* and *Diplodina* Canker in Western Australia', Final Report to the Threatened Species and Communities Unit, Biodiversity Group, Environment Australia. Department of Conservation and Land Management, Bentley.

Department of Conservation and Land Management 2003, 'Biodiversity values of the Fitzgerald River Corridor', Fitzgerald Biosphere Group Inc, In Fitzgerald River Catchment Folder.

Department of Environment 2003, 'Phillips River Action Plan', Department of Environment, Water Resource Management Series Report No WRM 40. May 2003.

Department of Environment 2004a, 'Jerdacuttup River Action Plan', Department of Environment, Department of Environment Water Resource Management Series No WRM 43, June 2004.

Department of Environment 2004b, 'Environmental Status of Wellstead Estuary, South Western Australia (Draft)', Department of Environment.

Department of Environment and Heritage 'Australian Wetlands Database'.
<http://www.deh.gov.au/water/wetlands/database/index.html>

Department of Environment and Heritage 2001, 'The Action Plan for Australian Rodents. Recovery Outlines - Western Mouse and Heath Mouse', Department of Environment and Heritage, Canberra.
<http://www.deh.gov.au/biodiversity/threatened/recovery/index.html>

Diamond RE 1996, 'Hydrogeological notes on the wetlands of the Bremer Bay area', Hydrogeology Report HR 138, Resource Investigation Division, Water and Rivers Commission, Perth WA.

Dodd J 1977, 'Floristic studies on West Mount Barren, Fitzgerald River National Park', Unpublished paper.

Dodson WJ 1997, 'Hydrogeology of the Bremer Bay 1:250,000 Sheet', Water and Rivers Commission Hydrogeological Map Explanatory Note Series, Report HM 3, Water and Rivers Commission, Perth, Western Australia. 28pp.

Dodson WJ 1999, 'Hydrogeology of the Newdegate 1:250,000 Sheet'. Water and Rivers Commission Hydrogeological Map Explanatory Note Series, Report HM 5. Water and Rivers Commission, Perth Western Australia. 27pp.

Duxbury G 1984, 'Winter burning program in mallee and heath country', Australian Ranger Bulletin, vol. 4, no.2, 133.

Ecologia 1998, 'Ravensthorpe Water Source upgrade: vegetation and flora survey', Unpublished report to Water Corporation, Albany.

Ecologia 2000, 'A Preliminary Evaluation of Wetlands in the Esperance Water Resource Region', Unpublished report to Water and Rivers Commission.

Esau IN and Lyons TJ 2002, 'Effect of sharp vegetation boundary on the convective atmospheric boundary layer', Agricultural and Forest Meteorology, vol. 114, 3-13.

Evelegh N & Cockerton G 2003, 'A comprehensive survey for potential pollinators of *Kunzea similis* (P2)', Extract from: Consultants report to BHP Billiton Ltd Ravensthorpe Nickel Operation Pty Ltd.

Everaardt A 2003, 'The impact of fire on the Honey Possum *Tarsipes rostratus* in the Fitzgerald River National Park, Western Australia', Thesis (Ph D) Murdoch University

Everaardt A 2005, 'The impact of fire on the endemic honey possum', Western Wildlife, vol. 9, no.1, pp.1-3.

Farmer DL, Stanton D and Coles NA 2002, 'Upper Fitzgerald River/ Lake Magenta Nature Reserve. Surface Water Impact Assessment and Recommendations', Report prepared for the Dept of Conservation & Land Management by the Engineering Water Management Group, Dept of Agriculture. 58pp.

Ferdowsian R McFarlane D and Ryder A 1994, 'Hydrological systems of the Fitzgerald Biosphere Subregion and their future salinity', Department of Agriculture WA, Unpublished report?

Field C 2001, 'Ravensthorpe District Coastal Management Plan (Draft)', Shire of Ravensthorpe WA

Fisheries WA 1999, 'Thelohania found in WA Yabbies', Fisheries Western Australia. Fish Health Notification (pamphlet), 2pp.

Fitzgerald Biosphere Group 2003, 'Enhancing the Fitzgerald-Magenta Bush Corridor. Natural Heritage Trust Final report Project No 983082', Fitzgerald Biosphere Group (Inc), In Fitzgerald River Catchment Folder.

Fitzgerald River National Park Association 1987, 'Introduction to the fire management plan for Fitzgerald River National Park', Unpublished report.

Forbes VR 2004, 'The role of benthic vegetation in the ecology of South Coast estuaries in Western Australia', Thesis (Ph D), School of Plant Biology, University of Western Australia.

Ford J 1975, 'Report on the occurrence of the Western Whipbird in the Fitzgerald River National Park', Unpublished short communication, 2pp.

Forests Department 1980, 'Management plan: Cocanarup Timber Reserve', Forests Department, Perth.

Freeman, M. J., and Hassan, L. Y. 2004, 'Ravensthorpe district, Resource potential for land use planning', Resource potential for land use planning series, Geological Survey of WA. Perth WA.

Friend GR 1992, 'Possum in peril', Landscape, Department of Conservation and Land Management, Perth., vol. 7, pp.22-27.

Friend JA 2001, 'Medium-term radio-tracking of Dibblers, Fitzgerald River National Park', Final report to Bankwest Landscape Conservation VisaCard. Dept of Conservation and Land Management, Perth. pp.1-7.

Friend JA 2004, 'Dibbler (*Parantechinus apicalis*) Recovery Plan. July 2003- June 2013', Western Australian Wildlife Management Program No 38, Department of Conservation and Land Management, Wanneroo WA, 26pp.

Friend T & Friend G 1992, 'Conservation of the Red-tailed Phascogale (*Phascogale calura*)', ANCA Endangered Species Program. Final report: Project 22. Unpublished report by Dept of Conservation & Land Management to ANCA.

Friends of the Fitzgerald River National Park 2002a, 'Fire Symposium: Audio CD of Speaker Presentations held at Ravensthorpe & Gairdner, 22 & 25 February 2002', Friends of the Fitzgerald River National Park.

Friends of the Fitzgerald River National Park 2002b, 'Fire Symposium: Audio CD of Open Forum Session held at Ravensthorpe 22 February 2002', Friends of the Fitzgerald River National Park

Friends of the Fitzgerald River National Park 2002c, 'Fire Symposium: Audio CD of Open Forum Session held at Gairdner 25 February 2002', Friends of the Fitzgerald River National Park

Furby S 1998, 'Mapping salinity in the Fitzgerald Biosphere Region. A report from the NHT-funded Land Monitor', CSIRO Mathematical and Information Sciences, Floreat Park, WA.

<http://www.cmis.csiro.au/RSM/research/pdf/ftzsummary.pdf>

Furby SJ & Wallace JF 1998, 'Land condition monitoring in the Fitzgerald Biosphere Region', Proceedings of the 9th Australasian Remote Sensing Conference.

Gales NJ 1990, 'Abundance of Australian sea lions *Neophoca cinerea* along the southern Australian coast, and related research.' Unpublished report to the Western Australian Department of Conservation and Land Management, South Australian National Parks and Wildlife Service and the South Australian Wildlife Conservation Fund, July 1990.

Gales NJ, Haberley B & Collins P 2000, 'Changes in the abundance of New Zealand fur seals, *Arctocephalus forsteri*, in Western Australia', Wildlife Research, vol. 27, pp.165-168.

Gales NJ, Shaughnessy PD & Dennis TE 1994, 'Distribution, abundance and breeding cycle of the Australian sea lion *Neophoca cinerea* (Mammalia: Pinnepidida)', Journal of Zoology London , vol. 234, pp.353-370.

Gammon PR & James NP 2001, 'Palaeogeographical influence on Late Eocene biosiliceous sponge-rich sedimentation, southern Western Australia', Sedimentology, vol. 48, pp.559-584.

Gammon PR, James NP, Clarke JDA & Bone Y 2000, 'Sedimentology and lithostratigraphy of Upper Eocene sponge-rich sediments, southern Western Australia', Australian Journal of Earth Sciences, vol. 47, pp.1087-1103.

Garavanta CAM 1997, 'A mark-recapture study of the social organisation of the Honey Possum *Tarsipes rostratus* in the Fitzgerald River National Park, Western Australia', Thesis (Ph D) Murdoch University

Garavanta CAM, Wooller RD & Richardson KC 2000, 'Movement patterns of honey possums, *Tarsipes rostratus*, in the Fitzgerald River National Park, Western Australia', Wildlife Research, vol. 27, pp.179-183.

Gibson N, Keighery GJ & Keighery BJ 1997, 'Contributions of N H Speck to the biogeography of Proteaceae in Western Australia', Journal of the Royal Society of Western Australia , vol. 80, 73-77.

Gilfillan S 2000, 'Terrestrial fauna of the south coast - a review. A supporting document to Southern Shores: a strategy to guide coastal and marine planning and management in the south coast region of Western Australia', South Coast Management Group under Coasts and Clean Seas and Natural Heritage Trust Programs.

Gilfillan S 2002, 'South Coast Invertebrate Refugia Project', Unpublished report Department of Conservation and Land Management South Coast Region

Gilfillan S, 2003? 'South Coast Threatened Fauna Database. A project carried out as part of the South Coast Macro Corridor Project', Unpublished Draft Report. Dept of Conservation and Land Management, Albany Regional Office.

Glevan Dieback Consultancy Services 2000, 'Assessment for the presence of *Phytophthora cinnamomi* - Ravensthorpe Nickel Project.', Unpublished report, RNO document number 7-992.

Gondwana Link Partners 2004, 'Functional Landscape Plan for the Fitzgerald to Stirling Operational Area (Version 1.1 DRAFT)', Unpublished Draft report by Gondwana Link partners. Sept 2004.

Grant M & Barrett S 2003, 'The distribution and impact of *Phytophthora cinnamomi* Rands in the south coast region of Western Australia.', In "Phytophthora in Forests and Natural Ecosystems". 2nd International IUFRO Working Party 7.02.09 Meeting, Albany, W. Australia 30th Sept-5th Oct 2001. Pp 34-40. Murdoch University Print.

Green B & Wetherley S 2000, 'Geology, Landforms and Mineral Extraction in the South Coast - a review.', South Coast Management Group under Coasts and Clean Seas and Natural Heritage Trust Programs.

Green JW 1982, 'A new species of *Conostylis* R. Br. (Haemodoraceae) from the Fitzgerald River area, Western Australia', Nuytsia, vol. 4, pp.55-59.

Griffith J , 'Benthic nitrogen cycling in shallow temperate coastal lagoons with intermittent oceanic connection: the role of meiofauna and hypersalinity. (The effect of sediment-dwelling fauna and high salinities on nitrogen cycling in coastal lagoons)', Thesis (PhD) in progress, Dept of Environmental Management, Edith Cowan University. (Commenced Feb 1999 but currently suspended)

Groom PK and Lamont BB 1996, 'Ecogeographical analysis of *Hakea* (Proteaceae) in south-western Australia with special reference to leaf morphology and life form', Australian Journal of Botany, vol. 44, pp.527-542.

Halse SA, Jaensch RP, Munro DR & Pearson GB 1990, 'Annual waterfowl counts in south-western Australia - 1988/89', CALM Technical Report No 25, Department of Conservation and Land Management, Perth

Halse SA, Pearson GB, Vervest RM & Yung FH 1995, 'Annual waterfowl counts in south-west Western Australia - 1991/92', CALM Science, vol. 2, no.1, pp.1-24. Department of Conservation and Land Management, Perth.

Halse SA, Pearson GB and Patrick S 1993, 'Vegetation of depth-gauged wetlands in nature reserves of south-west Western Australia', Department of Conservation and Land Management, Perth, CALM Technical Report No 30.

Halse S.A, Scanlon M.D and Cocking J.S 2002, 'Australia-Wide Assessment of River Health: Western Australian Bioassessment Report (WA Final Report)', Monitoring River Heath Initiative Technical Report no 7, Commonwealth of Australia and Department of Conservation and Land Management, Canberra and Wanneroo. <http://www.deh.gov.au/water/publications/index.html>

Halse SA, Vervest RM, Munro DR, Pearson GB & Yung FH 1992, 'Annual waterfowl counts in south-western Australia - 1989/90', CALM Technical Report No 29, Department of Conservation and Land Management, Perth.

Halse SA, Vervest RM, Pearson GB, Yung FH & Fuller PJ 1994, 'Annual waterfowl counts in south-west Western Australia - 1990/91', CALM Science, vol. 1, no.2, pp.107-129. Department of Conservation and Land Management, Perth.

Halse SA, Williams MR, Jaensch RP and Lane JAK 1993, 'Wetland characteristics and waterbird use of wetlands in south-western Australia', *Wildlife Research*, vol. 20, pp.103-126.

Hammersley B 2002, 'Bryophytes - species list for Fitzgerald River National Park to end of 2001', Unpublished; letter from Mrs Brenda Hammersley to Peter Wilkins, FRNP 9 Feb 2002.

Harman N, Kendrick GA, Harvey E, Vanderklift MA & Walker DI 2002, 'Use of surrogates for the rapid assessment of marine biodiversity.' *Aquatic protected areas - what works best and how do we know?* (Eds: JP Beumer, A Grant & DC Smith) *World Congress on Aquatic Protected Areas proceedings*, APAC Congress (2002, Cairns, Queensland).

Harold G & Dennings S 1998, 'The first five years. 1992-1997. A report by the Malleefowl Preservation Group', Malleefowl Preservation Group Inc Ongerup.

Harper RJ 1994, 'The nature and origin of the soils of the Cairlocup area, Western Australia, as related to contemporary land degradation.', Thesis (Ph D), University of Western Australia.

Hassell CW 2000, 'Fire ecology studies in Fitzgerald River National Park, Western Australia', Thesis (Ph D), Botany Department University of WA, pp.183pp + Appendices.

Hassell CW & Dodson JR 2003, 'The fire history of south-west Western Australia prior to European settlement in 1826-1829' In: *Fire in ecosystems of south-west Western Australia: Impacts and management*. Eds I Abbott & N Burrows. pp.71-85. Backhuys Publishers, Leiden, The Netherlands. 2003.

Heald DI 1984, 'Amateur net fishing survey of two Western Australian South Coast Estuaries in January 1981.', Dept of Fisheries and Wildlife WA Report No 60, pp.63pp.

Heller MK 1996a, 'Modelling the effects of rehabilitation and changed agricultural practices in a saline-affected rural catchment, on the south coast western Australia', Thesis (Hons), Environmental Management, Edith Cowan University 1996.

Heller MK 1996b, 'Fauna of the Bremer River Catchment. Species recorded and those likely to occur in the catchment.' Unpublished report, pp.29pp.

Heller MK and Brown N 1996, 'A physical and floristic survey of native vegetation remnants in the Bremer River catchment, South Coast Western Australia', A report to the Bremer River Catchment Group and Jerramungup Land Conservation District. Funded by the National Landcare Program. (Unpublished).

Henschke CJ 1982, 'Preliminary groundwater investigation in relation to soil salinity at Fitzgerald WA', WA Dept of Agriculture Division of Resource Management Technical Report No 9.

Hesp PA 1984, 'Aspects of the geomorphology of south-western Australian estuaries', In "Estuarine environments of the Southern Hemisphere" Ed EP Hodgkin. Dept Conservation and Environment WA Bulletin 161, pp. 61-73.

Hodgkin EP 1997, 'History and management of Culham Inlet, a coastal salt lake in south-western Australia', *Journal of the Royal Society of Western Australia*, vol. 80, pp.239-247.

Hodgkin EP 1998, 'The future of the estuaries of south-western Australia', *Journal of the Royal Society of Western Australia*, Royal Society of Western Australia, vol. 81, pp.225-228.

Hodgkin EP & Clark RC 1987, 'An inventory of information on the estuaries and coastal lagoons of south Western Australia. Wellstead Estuary, the estuary of the Bremer River', *Estuarine Study Series No 1*, Environmental Protection Authority, Perth WA.

Hodgkin EP & Clark RC 1988, 'An inventory of information on the estuaries and coastal lagoons of south Western Australia. Beaufort Inlet and Gordon Inlet, Estuaries of the Jerramungup Shire', *Estuarine Study Series No 4*, Environmental Protection Authority, Perth WA.

Hodgkin EP & Clark RC 1990, 'An inventory of information on the estuaries and coastal lagoons of south Western Australia. Estuaries of the Shire of Ravensthorpe and the Fitzgerald River National Park.', Estuarine Study Series No 7, Environmental Protection Authority, Perth WA.

Hodgkin EP & Hesp P 1998, 'Estuaries to salt lakes: Holocene transformation of the estuarine ecosystems of south-western Australia', *Marine and Freshwater Research*, vol. 49. pp183-201.

Hodgkin EP & Kendrick GW 1984, 'The changing aquatic environment 7000BP to 1983 in the estuaries of south-western Australia', In: "Estuarine Environments of the Southern Hemisphere" Ed EP Hodgkin. Dept of Conservation and Environment WA Bulletin 161 , pp.85-95.

Hodgkin EP & Lenanton RC 1981, 'Estuaries and coastal lagoons of South Western Australia'. In: "Estuaries and Nutrients" (eds BJ Neilson & BJ Cronin), Humana Press, Clifton NJ. pp.307-321.

Hollingsworth DA 1996, 'Veining, metasomatism and metamorphism of metapelites of the Mount Barren Group at West Beach, Western Australia', Thesis (Honours), Curtin University of Technology.

Holst RJ (Undated) , 'Possible factors affecting southern right whale calving at Doubtful Island Bay, south Western Australia', Unpublished report?

Hopkinson K 2001, 'Recommendations for the management of the Bremer Wetlands: Swamp Rd catchment, Gairdner Study Group Catchment, Devils Swamp Catchment', Report produced by Water and Rivers Commission and Green Skills Wetland Project Officer. December 1998 - July 1999, Updated June 2001.

Hopper SD 1979, 'Biogeographical aspects of speciation in the South West Australian Flora', *Ann Rev Ecol Syst*, vol. 10, pp. 399-422.

Hopper SD 1991, 'Fitzgerald Reborn.', *Landscape*, , vol. 6, no.3, pp.34-38. Department of Conservation and Land Management, Perth.

Hopper SD, Coates DJ & Burbidge AH 1978, 'Natural hybridisation and morphometric relationships between three mallee eucalypts in the Fitzgerald River National Park, WA', *Australian Journal of Botany*, vol. 26, pp.319-333.

Hopper SD & Gioia P 2004, 'The Southwest Australian Floristic Region: Evolution and conservation of a global hotspot of biodiversity', *Annual Review of Ecology, Evolution and Systematics*, vol. 35, pp.623-50.

Hopper SD, Harvey MS, Chappill JA, Main AR & York Main B 1996, 'The Western Australian biota as Gondwana heritage - a review'. In: *Gondwanan Heritage: Past, Present and Future of the Western Australian Biota*. Ed SD Hopper *et al*, Surrey Beatty & Sons, Chipping Norton. pp.1-46.

Hos D 1975, 'Preliminary investigation of the palynology of the Upper Eocene Werillup Formation, Western Australia', *Journal of the Royal Society of Western Australia* 58 (1): 1-14.

House R, Hick C & Watson J 1998, 'Cooperative coastal care on the south coast of Western Australia with special reference to the Fitzgerald Biosphere Reserve', *Proceedings Coast to Coast '98 Australian Coastal Management Conference*. Ministry for Planning, Perth.

Itzstein-Davey F 2003a, 'Changes in the abundance and diversity of the Proteaceae over the Cainozoic in south-western Australia', Thesis (PhD) University of Western Australia.

Itzstein-Davey F 2003b, 'The representation of Proteaceae in modern pollen rain in species-rich vegetation communities in south-western Australia.', *Australian Journal of Botany*, vol. 51, pp.135-149.

Jaensch RP, Vervest RM & Hewish MJ 1988 *Waterbirds in Nature Reserves of South-western Australia 1981 - 1985: Reserve Accounts*. Royal Australian Ornithologists Union. Report No. 30.

Jeffery, M 1999, 'Current distribution and status of *Leptospermum laevigatum* (Victorian Tea Tree) and other environmental weeds in Jerramungup Shire, September 1999.' Unpublished Report, 3pp.

Jenkins CFH 1980, 'The Fitzgerald River National Park - A Biosphere Reserve', In: The National Parks of Western Australia, pp50-60. National Parks Authority of Western Australia, Perth,

Jennings JT, Austin AD & Stevens NB 2004, 'The aulacid wasp fauna of Western Australia with descriptions of six new species', Records of the Western Australian Museum, vol. 22, pp.115-128.

Johnson SL 1998, 'Hydrogeology of the Ravensthorpe 1:250,000 sheet: Western Australia'. Water and Rivers Commission Hydrogeological Map Explanatory Notes Series, Report HM 4. Water and Rivers Commission, Perth.

Jones J 1998, 'Corackerup Nature Reserve. Management Plan 1998-2008', Unpublished report. Prepared for final year assessment, School of Environmental Biology, Curtin University.

Kaiser Simons Joint Venture 1999, 'Ravensthorpe Nickel Project Feasibility Study - Consultative Environmental Review.'

Kay JG, Glover JE, & Pridier RT 1963, 'The Plantagenet Beds at Hummock Beach, Bremer Bay, Western Australia', Journal of the Royal Society of Western Australia, vol. 46, no.3, pp.69-73.

Keighery, GJ 1996, 'Phytogeography, biology and conservation of Western Australian Epacridaceae', Annals of Botany, vol. 77, pp.347-355.

Keith DA, McCaw WL & Whelan RJ 2001 'Fire regimes in Australian heathlands and their effects on plants and animals', In: "Flammable Australia - the fire regimes and biodiversity of a continent" RA Bradstock, JE Williams & AM Gill (Eds) , 199-237.Cambridge University Press.

Kitchener DJ and Halse SA 1978, 'Reproduction in female *Eptesicus regulus* (Thomas) (Vespertilionidae), in South-western Australia', Australian Journal of Zoology, vol. 26, pp.257-67.

Kitchener DJ and Coster P 1981, 'Reproduction in female *Chalinolobus morio* (Gray) (Vespertilionidae), in South-western Australia', Australian Journal of Zoology, vol. 29, pp.305-320.

Kitchener DJ & Vicker E 1981 *Catalogue of modern mammals in the Western Australian Museum 1895 - 1981*. West. Aust. Mus. Western Australia.

Lamont BB & Connell SW 1996, 'Biogeography of *Banksia* in southwestern Australia', Journal of Biogeography, vol. 23, pp.295-309.

Laws, AT 1982, 'Hydrogeology of the South Coast', In: Sand, salt and farming. A land use review. Proceedings of a seminar organised by the Esperance-Dundas Zone Council of the Primary Industry Association and the Department of Agriculture, Esperance. pp.63-70.

Leighton S and Watson J 1992, '"Save the Bush". South Coast River Corridor Project. A preliminary biological survey of four river foreshore reserves along the South Coast of Western Australia', Unpublished report by Dept of Conservation and Land Management, South Coast Regional Office.

Lenanton RCJ 1974, 'Fish and Crustacea of the Western Australian South Coast Rivers and Estuaries', Fisheries Research Bulletin , Dept of Fisheries & Fauna, Perth, vol. 13, pp.1-17.

Lenanton RCJ 1984, 'Life history strategies of fish in some temperate Australian estuaries', In: Estuarine and coastal environments of the Southern Hemisphere (ed EP Hodgkin) pp 119-137. Dept of Conservation and Environment, WA, Bulletin 161.

Lillicrap A 2004, 'Groundwater trends in the Fitzgerald Biosphere subregion', Department of Agriculture, Perth, Miscellaneous Publication 13/2004, Department of Agriculture. 9pp.

Lisson J 1994, 'Swamp Road Catchment Group Project', Report by Dept of Agriculture Jerramungup District Office, 90pp.

Livesey NJ 1993, 'A natural environment bibliography of the Albany region', Unpublished report to the Heritage Council of Western Australia, 27pp.

Lullfitz AK 1994, 'The terrestrial vertebrate fauna of Kent Location 2014', Unpublished communication.

Lynam AJ 1987, 'Inbreeding and juvenile dispersal in insular populations of two dasyurid marsupials: the dibbler, *Parantechinus apicalis*, and the grey-bellied dunnart *Sminthopsis griseoventer*', Thesis (Honours), Zoology Department, University of Western Australia. Oct 1987.

Lyons, TJ 2002, 'Clouds prefer native vegetation', Meteorology and Atmospheric Physics, vol. 80, 131-140.

Marchant N 1991, 'The vascular flora of south-western Australia', Association of Societies for Growing Native Plants 1991 Conference Perth. , pp. 16-18.

Masters BK 1990, 'The potential costs and benefits of mineral sand mining within Exploration License 70/729 and mining lease 70/620 North East of Bremer Bay. Western Australia.', Report prepared for Eucla Mining NL and Placer Pacific Ltd.

Maxwell Geoservices 2002, 'Chingarrup-Yenteyerrup Swamp Bushland Restoration and Preservation Project. Report on the geophysical interpretation and database compilation', Report to Swamp Road Catchment Group. NHT Buscare Project 963163, pp.33pp + 22 maps.

McCaw L & Hanstrum B 2003, 'Fire environment of Mediterranean south-west Western Australia', In: Fire in ecosystems of south-west Western Australia: Impacts and management. Eds I Abbott & N Burrows, pp.87-106. Backhuys Publishers, Leiden, The Netherlands. 2003

McCaw L, Maher T & Gillen K 1992, 'Wildfires in the Fitzgerald River National Park, Western Australia, December 1989', Dept Conservation and Land Management WA Technical Report No 26, Department of Conservation and Land Management, Perth.

McNee S 1986, 'Surveys of the Western Whipbird and Western Bristlebird in Western Australia, 1985', RAOU Report No 18.

McNee S & Newbey B 1997, 'Western Bristlebird Survey 1997. Fitzgerald River National Park and Lake Magenta Nature Reserve', Unpublished report.

McNee SA & Newbey BJ 1998, 'Western Bristlebird Survey 1998. Fitzgerald River National Park', Unpublished report.

McQuoid N 1994, 'Endangered: Fitzgerald River woolybushes', Landscope, vol. 9, no.4, 36.

McQuoid N 2003, 'Reasons for Richness: The nature of the Fitzgerald Biosphere Flora', Unpublished report prepared for SCRIPT Fitzgerald Biosphere Expo, 20 Sept 2003. SCRIPT, NHT and Greening Australia WA.

McQuoid NK and Hopper SD 2002, 'Eucalyptus calyerup (Myrtaceae), a new species of possible hybrid origin from south-western Australia.', Nuytsia, vol. 15, no.1, pp.63-68.

Mercer J 1999, 'Revegetation for biodiversity in the Western Fitzgerald Biosphere', Project report. Project funded by ANCA.

Mercer J 2003a, 'Revegetation component of the Fitzgerald River Catchment Group's "Enhancing the Fitzgerald-Magenta Bush Corridor"', Fitzgerald Biosphere Group, Inc, Supplement to NHT final report. In FBG Fitzgerald River Catchment Folder.

Mercer J 2003b, 'The First Digital Version of Newbey's Vegetation Maps ', From: Newbey K.R. (1979). The Vegetation of Central South Coastal Western Australia, Thesis (M. Phil.), Murdoch

University, Western Australia. Technical Production by Watershed Digital Mapping, Western Australia.

Milewski AV 1979, 'A climatic basis for the study of convergence of vegetation structure in mediterranean Australia and southern Africa', *Journal of Biogeography*, vol. 6, pp. 293-299.

Milewski AV 1981a, 'A comparison of vegetation height in relation to the effectiveness of rainfall in the mediterranean and adjacent arid parts of Australia and South Africa.', *Journal of Biogeography*, vol. 8, pp.107-116.

Milewski AV 1981b, 'A comparison of reptile communities in relation to soil fertility in the mediterranean and adjacent arid parts of Australia and South Africa.', *Journal of Biogeography*, vol. 8, pp.493-503.

Milewski AV 1982, 'The occurrence of seeds and fruits taken by ants versus birds in mediterranean Australia and southern Africa, in relation to the availability of soil potassium', *Journal of Biogeography*, vol. 9, pp.505 - 516.

Milewski AV 1983, 'A comparison of ecosystems in Mediterranean Australia and Southern Africa. Nutrient poor sites at the Barrens and the Caledon Coast', *Ann Rev Ecol Syst*, vol. 14, pp.57-76.

Milewski AV 1984, 'Similarities and differences of ecosystems in mediterranean Australia and southern Africa, with special reference to infertile sites at the Barrens and the Caledon coast.', Thesis (Ph D), Murdoch University.

Milewski AV 1986, 'A comparison of bird-plant relationships in southern Australia and southern Africa', Chap 11 in "The dynamic partnership: Birds and plants in southern Australia" Eds HA Ford & DC Paton. The Flora and Fauna of South Australia Handbooks Committee. Govt of South Australia

Milewski AV and Bond WJ 1982, 'Convergence of myrmecochory in mediterranean Australia and South Africa', Chap 9 in: RC Buckley (Ed) "Ant-plant interactions in Australia", pp 89-98. Dr W Junk Publishers, The Hague.

Milewski AV & Cowling RM 1985, 'Anomalies in the plant and animal communities in similar environments at the Barrens, Western Australia, and the Caledon Coast, South Africa.', *Proc. Ecol. Soc. Aust*, vol. 14, pp.199-212.

Mills HR & Spencer PBS 2003, 'Polymorphic microsatellites identified in an endangered dasyurid marsupial, the dibbler (*Parantechinus apicalis*)', *Molecular Ecology Notes* , vol. 3, pp.218-220.

Moir MA and Newbey KR 1995, 'A biological survey of the Fitzgerald Area, Western Australia. Part 3: Physical Environment', CALM Science Supplement , Department of Conservation and Land Management, Perth, vol. 3, pp.15-28.

Moore GA, Gee ST & Vincent D 1990, 'Jerdacuttup land resource and capability study', Technical Report 101, Division of Resource Management, Dept of Agriculture.

Muir BG 1980, 'Fitzgerald River National Park. A summary of existing knowledge and suggestions for further research.', Report by the National Parks Authority.

Muir BG 1985, 'The dibbler (*Parantechinus apicalis*: Dasyuridae) found in Fitzgerald River National Park, Western Australia', *Western Australian Naturalist*, vol. 16, no.23, pp.48-51.

Newbey B 1996, 'Report on Hooded Plover Project. June 1994 to March 1996', Supplement to Western Australian Birds Notes No 79, 17pp. RAOU (WA Group).

Newbey B and Chapman A 1995, 'A biological survey of the Fitzgerald area, Western Australia. Part 5: Birds', CALM Science Supplement, vol. 3, pp.47-82.

Newbey B, McNee S & Burbidge AH 2003, 'Western Ground Parrot: A parrot in peril', *Eclectus*, vol. 14, pp.4-7.

Newbey BJ & Newbey KR 1987, 'Bird dynamics of Foster Road, near Ongerup Western Australia', pp.341-343 In: *Nature Conservation: The role of remnants of native vegetation*. Eds. DA Saunders, GW Arnold, AA Burbidge & AJM Hopkins. Surrey Beatty and Sons Pty Ltd in association with CSIRO and CALM.

Newbey KR 1976, 'The vegetation and land use of the Tooregullup Dune System, near Bremer Bay WA', Unpublished (Draft) Paper. (Paper prepared for use in Mining Warden's Court).

Newbey KR 1977, 'North Fitzgerald Land Use Survey', Unpublished paper.

Newbey KR 1979a, 'The vegetation of Central South Coastal Western Australia', Thesis (M Phil), Murdoch University, pp.84pp (Vol 1) 396pp (Vol 2).

Newbey KR 1979b, 'Agriculture or conservation - the Fitzgerald area', In: *Agriculture and the Environment in Western Australia. Proceedings of Symposium*. Perth 10 Oct 1979. pp33-41.WAIT, Bentley.

Newbey KR 1980, 'Some conservation aspects of the proposed manganese mining in the Fitzgerald River National Park', Unpublished paper (Draft), pp.23pp.

Newbey KR 1981, 'Vegetation and flora of Roes Rock, Fitzgerald River National Park, Western Australia', *Western Australian Herbarium Research Notes* , vol. 5, pp.63-69.

Newbey KR 1982a, 'The Fitzgerald River National Park, Western Australia: some conservation issues', In: *Fighting for Wilderness*. Eds, Mosley,J.G & Messer, J. *Papers from the Australian Conservation Foundation Third National Wilderness Conference*, 1983.

Newbey KR 1982b, 'Land Use Planning of the North Fitzgerald Area: Initial Ecological Survey. Interim Report.', Unpublished report.,

Newbey KR 1984, 'Tree planting in the Jerramungup Shire in 1984', Unpublished presentation to "Maintaining your balance" Jerramungup Lions Club Tree Committee Seminar Jerramungup WA 11 Apr 1984.

Newbey KR 1985a, 'Fire ecology study of the Marningup Section, Fitzgerald River National Park, Western Australia. Part 1: Pre-burn vegetation and flora survey', Report prepared for Dept of Conservation and Land Management, Perth July 1985.

Newbey KR 1985b, 'An introduction to the geology of the Stirling Range Ravensthorpe area', Jerramungup Cell of the Priority Country Areas Programme, Unpublished report.

Newbey KR 1986a, 'Rare or threatened Australian plants. Fitzgerald River NP (FRNP) & Fitzgerald Biosphere Project (FBP)', Unpublished report.

Newbey KR 1986b, 'Historical overview of landscapes of the Jerramungup Soil Conservation District, Western Australia', In: *Profit or Pipe Dream? Proceedings of Seminar*, 13-14 March 1986, Jerramungup Soil Conservation District Advisory Committee.

Newbey KR 1987, 'Draft Management Plan Pallinup/Beaufort Inlet Area', Dept Conservation and Environment Bulletin 178.

Newbey KR 1988, 'Land use planning and the Hamersley Inlet Reserve, near Hopetoun, Western Australia', Unpublished report.

Newbey KR 1990, 'Supplementary notes on the flora of the Fitzgerald River National Park, Western Australia - 1. Additional and unnamed taxa, and taxa with a high conservation value', *Kingia*, vol. 1, no.2, pp.195-216.

Newbey KR 1995, 'A biological survey of the Fitzgerald area, Western Australia. Part 4: Vegetation and Flora', CALM Science Supplement , vol. 3, pp.29-46.

Newbey KR and McQuoid N 1997, 'Checklist of plants: Fitzgerald River National Park', Fitzgerald River National Park Association, Ravensthorpe WA.

Newbey KR & Newbey BJ 1985, 'Checklist of birds: Fitzgerald River National Park', National Parks Authority of Western Australia, Perth.

Newbey KR, Newbey B & Bradby K 1983, 'Notes on the Swamp Parrot', Western Australian Naturalist, vol. 15, no.6, pp.145.

Northcote KH, Bettenay E, Churchward HM and McArthur WM 1967, 'Atlas of Australian Soils. Explanatory data for sheet 5: Perth- Albany - Esperance area', CSIRO and Melbourne Uni Press.

Onus ML, Hamilton NA & Algar D 2004, 'Preliminary assessment of feral cats for the Ground Parrot program within the Fitzgerald River National Park', Department of Conservation and Land Management, Woodvale. Unpublished report.

Outback Ecology 2003, 'Vegetation survey of the Kundip mining lease (M74/41, 51, 53 and 135)', Unpublished report for Tectonic Resources NL.

Overheu T 1995, 'Soil Information Sheets for Ravensthorpe and part of the Jerramungup Agricultural Areas', Department of Agriculture Misc Publ 16/95. *NB Out of print, but currently being revised and will be re-published (Tim Overheu pers comm 30 Sept 2004)*.

Overheu T 1996, 'Soil Information Sheets for the Jerramungup Agricultural Area', Miscellaneous Publication 20/96, Dept of Agriculture South Perth.

Overheu TD 2002, 'North Jerramungup-Fitzgerald Area Rapid Catchment Appraisal', Resource Management Technical Report 234, Department of Agriculture Perth.

Overheu TD 2004, 'Bremer-Gairdner Catchment Appraisal 2003', Resource Management Technical Report 273. Department of Agriculture Perth.

Overheu TD (in prep), 'Jerramungup Land Resource Survey and accompanying map (1:250,000 Newdegate and Bremer Sheets)', Department of Agriculture Perth.

Quinlan K, Moro D & Lund M 2004, 'Improved trapping success for rare species by targeting habitat types using remotely sensed data: a case study of the heath mouse (*Pseudomys shortridgei*) in Western Australia.', Wildlife Research, vol. 31, pp.219 - 227.

Radke LC, Prosser, IP, Robb M, Brooke B, Fredericks D, Douglas GB and Skemstad J 2004, 'The relationship between sediment and water quality, and riverine sediment loads in the wave-dominated estuaries of south-west Western Australia.', Marine and Freshwater Research, vol. 55, pp.581-596.

Raines J 2002, 'Hooded Plover Management Plan (2002-2012) Western Australia', Western Australian Bird Notes Supplement No 7, July 2002. Birds Australia - WA Inc.

Ravensthorpe Nickel Operations Pty Ltd 1999, 'Ravensthorpe Procedures - Fauna'. Unpublished report.

Ravensthorpe Nickel Operations Pty Ltd 2002, 'Ravensthorpe Nickel Project. Section 46 Review. EPA Assessment Number 1199 and Ministerial Statement Number 509'.

Renfree MB, Russell EM & Wooller RD 1984, 'Reproduction and life history of the Honey Possum, *Tarsipes rostratus*', In: Possums and Gliders, ed by AP Smith & ID Hume, pp.427-437. Australian Mammal Society, Sydney 1984. Surrey Beatty and Sons.

Richardson KC, Wooller RD & Collins BG 1986, 'Adaptations to a diet of nectar and pollen in the marsupial *Tarsipes rostratus* (Marsupialia: Tarsipedidae)', Journal of Zoology London (A), vol. 208, pp.285-297.

Robinson CJ 1991, 'Conservation status and economic contribution of *Banksia coccinea* and *Banksia baxteri*', Unpublished report for the Department of Conservation and Land Management.

Robinson CJ 1997, 'Integrated vegetation management plan for Fitzgerald Biosphere Reserve zone of cooperation', Report to Environment Australia and WA Department of Conservation and Land Management, Albany.

Robinson CJ & Coates DJ 1995, 'Declared Rare and Poorly Known Flora in the Albany District.', Dept of Conservation and Land Management, Albany, Wildlife Management Program No 20.

Robinson FN 1975, 'Discovery of the Western Whistler at Hopetoun', Western Australian Naturalist, vol. 13, pp.66-67.

Saffer VM 1998, 'A comparison of food plant utilization by nectar-feeding marsupials and birds in the Fitzgerald River National Park, Western Australia', Thesis (Ph D), Murdoch University.

Saffer VM 2004, 'Are diel patterns of nectar production and anthesis associated with other floral traits in plants visited by potential bird and mammal pollinators?' Australian Journal of Botany, vol. 52, no.1, pp.87-92.

Sanders A 1994, 'Summary: Fitzgerald Biosphere Reserve Workshop. 12 May 1994. Fitzgerald Hall.', Unpublished report

Sanders A 1996, 'Conservation Value of the Fitzgerald Biosphere Reserve Buffer/Transition Zone Phases I-IV', Dept of Conservation and Land Management South Coast Region Office, Albany, In conjunction with Australian Nature Conservation Agency. States Cooperative Assistance Program (project No 4473). Unpublished report.

Sanders A 1997, 'Monitoring in the Fitzgerald Biosphere Reserve', Report to Department of Conservation and Land Management, Albany and Environment Australia.

Sanders A 1998, 'The Fitzgerald Biosphere Reserve, a model for conservation and sustainable land use', Western Wildlife , vol. 2, no.2, 14-15. Newsletter of the Land for Wildlife Scheme, Department of Conservation and Land Management.

Sanders A and Harold G 2001, 'Fauna Survey. Revised Hopetoun Residential Development Project.', Conducted for the Dept of Land Administration by Sanders and Harold. Moloch Fauna Consultants.

Sarre GA, Platell ME & Potter IC 2000, 'Do the dietary compositions of *Acanthopagrus butcheri* in four estuaries and a coastal lake vary with body size and season and within and amongst these water bodies?' Journal of Fish Biology, vol. 56, pp.103-122.

Sarre GA & Potter IC 1999, 'Comparisons between the reproductive biology of black bream *Acanthopagrus butcheri* (Teleostei: Sparidae) in four estuaries with widely differing characteristics', International Journal of Salt Lake Research, vol. 8, pp.179-210.

Sarre GA & Potter IC 2000, 'Variation in age compositions and growth rates of *Acanthopagrus butcheri* (Sparidae) among estuaries: some possible contributing factors', Fishery Bulletin , vol. 98, no.4, pp.785-799.

Schiller N 2003, 'Fitzgerald River Catchment Appraisal Report 2002', Fitzgerald Biosphere Group, Inc, In: Fitzgerald River Catchment Folder.

Schoknecht N, Tille P & Purdie B 2001, 'Soil-landscape mapping in Western Australia - an overview', Resource Management Technical Report 280, Department of Agriculture. Available on-line from http://www.agric.wa.gov.au/progserv/natural/assess/PDF_files/mapping_overview.pdf

Scott JK 1979, 'Ants protecting Banksia flowers from destructive insects?' *Western Australian Naturalist*, vol. 14, no.6, pp.151-154.

SCRIPT 2004, 'Southern Prospects 2004-2009. The South Coast Regional Strategy for Natural Resource Management: Draft'. South Coast Regional Initiative Planning Team (SCRIPT)Inc, Albany Western Australia.

Serventy DL & Whittell HM 1976 *Birds of Western Australia*. Univ. West. Aust. Press, West. Aust.

Shaughnessy PD, Gales NJ, Dennis TE & Goldsworthy SD 1994, 'Distribution and abundance of New Zealand fur seals, *Arctocephalus forsteri*, in South Australia and Western Australia.', *Wildlife Research*, vol. 21, no.6, pp.667-695.

Shearer BL 1994, 'The major plant pathogens occurring in native ecosystems of south-western Australia', *Journal of the Royal Society of Western Australia*, vol. 77, pp. 113-122.

Shearer BL and Crane CE 2003, 'The influence of soil from a topographic gradient in the Fitzgerald River National Park on mortality of *Banksia baxteri* following infection by *Phytophthora cinnamomi*', In "Phytophthora in Forests and Natural Ecosystems". 2nd International IUFRO Working Party 7.02.09 Meeting, Albany, W. Australia 30th Sept-5th Oct 2001. 267-268. Murdoch University Print,

Shearer BL, Crane CE, Fairman RG and Grant MJ 1997, 'Occurrence of *Armillaria luteobubalina* and pathogen-mediated changes in coastal dune vegetation of south-western Australia', *Australian Journal of Botany*, vol. 45, pp.905-917.

Shearer BL, Crane CE, Fairman RG and Grant MJ 1998, 'Susceptibility of plant species in coastal dune vegetation of South-western Australia to killing by *Armillaria luteobubalina*', *Australian Journal of Botany*, vol. 46, pp.321-334.

Shearer BL, Fairman RG and Bathgate JA 1995, 'Cryptodiaporthe melanocraspeda Canker as a Threat to *Banksia coccinea* on the South Coast of Western Australia', *Plant Disease*, vol. 79, pp.637-641.

Shepherd D & True D 1995, 'Remnant mallee vegetation survey of the south-eastern wheatbelt: a report to the Western Australian Department of Agriculture', WA Dept Agriculture.

Shire of Jerramungup 1984, 'Jerramungup Coastal District Draft Management Plan', Dept Conservation & Environment Perth WA Bulletin 167.

Shire of Jerramungup 1994, 'Beaufort Inlet to Wellstead Estuary Coastal Plan Stage 2. Management of the Coastal Zone - Jerramungup Shire', Shire of Jerramungup.

Shire of Jerramungup 1995, 'Jerramungup Coastal Management Plan', Shire of Jerramungup.

Shire of Jerramungup and Dept of Planning and Urban Development 1994, 'Doubtful Islands Area Coastal Plan. Stage 1. Management of the Coastal Zone - Jerramungup Shire'.

Short R & McConnell C 2001, 'Extent and impacts of dryland salinity', Department of Agriculture, Resource Management Technical Report No 202. Western Australian Component of Theme 2 prepared for the National Land and Water Resources Audit.

Short R, Simons J & Skinner G 1997. 'Groundwater investigations at West River, WA', Unpublished report, Catchment Hydrology Group, Department of Agriculture, Esperance. October 1997, 8pp.

Shortridge GC 1909 An account of the geographical distribution of the marsupials and monotremes of south-west Australia having special reference to the specimens collected during the Balston Expedition of 1904 - 1907. *Proc. Zool. Soc. (Lond.)* 1909.

Sinclair Knight Mertz 2000, 'Quantitative Marine Biological Survey - Final.', Prepared for Ravensthorpe Nickel Operations Pty Ltd. RNO document number 7-1002.

Sinclair Knight Mertz 2001a, 'Stygofauna investigation in the Tamarine and Springdale Limestone Deposits', Prepared for Ravensthorpe Nickel Operations Pty Ltd. RNO document number 7-1003.

Sinclair Knight Mertz 2001b, 'Stygofauna Phase 2 Investigation', Prepared for Ravensthorpe Nickel Operations Pty Ltd. RNO document number 7-1197.

Smit AJ, Nupur NM & Walker DI 2000, 'Macrophyte measures of eutrophication status in south-western Australia.', (Unpublished) report prepared by Department of Botany, University of WA for the Water and Rivers Commission.

Smith GT 1977, 'The effect of environmental changes on six rare birds', *Emu*, vol. 77, pp.173-179.

Smith GT 1985, 'Fire effects on populations of the Noisy Scrub Bird (*Atrichornis clamosus*), Western Bristle Bird (*Dasyornis longirostris*) and Western Whip Bird (*Psophodes nigrogularis*).', In: *Fire Ecology and Management in Western Australian Ecosystems* J. Ford (Ed) Western Australian Institute of Technology Environmental Studies Group Report 14: 95-102.

Smith GT 1991, 'Ecology of the Western Whipbird (*Psophodes nigrogularis*) in Western Australia', *Emu*, vol. 91, pp.145-157.

Smith GT and Moore LA 1977, 'An extension of the range of the Western Bristlebird', *Western Australian Naturalist*, vol. 14, pp.28.

Sofoulis J 1958, 'The geology of the Phillips River Goldfield, Western Australia', In *Geological Survey of Western Australia*, Bulletin 110.

South Coast Estuarine Fishery Working Group 1995, 'Draft report of the South Coast Estuarine Fishery Working Group.', Fisheries Department of Western Australia., Fisheries Management Paper No 76.

South Coast Regional Assessment Panel and South Coast Regional Initiative Planning Team (SCRIPT) 1997, 'South Coast Regional Land and Water Care Strategy: The Fitzgerald Biosphere Subregion', Unpublished report.

Southern Western Australian Seagrass Study. (SWASS) 1996, 'Draft nomination for the Register of the National Estate. Draft final report compiled by Murdoch University for the Australian Heritage Commission.', Unpublished report?

Start AN 1997a, 'Dibbler Research Plan. A review prepared for Environment Australia Endangered Species Program. Project Number 496', Unpublished report to Environment Australia. Department of Conservation and Land Management.

Start AN 1997b, 'The Dibbler (*Parantechinus apicalis*): status and ecology in Western Australia. Project number 496.', Unpublished report to Environment Australia. Department of Conservation and Land Management.

St Clair RM 2002, 'Western Australian Triplectidinae (Trichoptera: Leptoceridae): descriptions of the female of *Triplectides niveipennis* and larvae belonging to four genera', *Records of the Western Australian Museum*, vol. 21, pp.111-127.

Stephens JR 1996, 'Structural and metamorphic evolution of the East Mount Barren area, Albany-Fraser Orogen, Western Australia', Thesis (Honours), Curtin University of Technology.

Stoneman T (1990) 'An introduction to the soils of the Jerramungup Advisory District; descriptions, illustrations and notes on eight common soils'. Department of Agriculture Western Australia Bulletin No 4230.

Sutcliffe KE 2003, 'The conservation status of aquatic insects in south-western Australia ', Thesis (Ph D), Murdoch University.

Switzer, Carolyn 1988, 'The Fitzgerald River National Park International Biosphere Project: Case study of a locally based policy making initiative in environmental management', Thesis (Honours), School of Environmental and Life Sciences Murdoch University.

Syme K 2004, 'Fungi Information for the South Coast Regional Natural Resources Management Strategy.', Unpublished report for the South Coast Regional Initiative Planning Team Inc.

Taylor JC & Baynes A 1970, 'Survey of Fitzgerald River Reserve by Zoology Department, University of Western Australia', Unpublished manuscript.

Teale, R Sanders A and Chapman A (In prep), 'Vertebrate Fauna of the Southern Central Coast region of Western Australia'.

Thom R 1977, 'The evolution of Proterozoic rocks near the Fraser Front at Ravensthorpe, Western Australia', Thesis (Ph D) London University.

Thom R & Chin RJ 1984, 'Bremer Bay, Western Australia', In West Aust Geol Survey 1:250,000 Geol Series Explan. Notes.

Thom R, Chin RJ and Hickman AH 1984, 'Newdegate, Western Australia. Sheet SI 50/8 ', West Aust Geol Survey 1:250,000 Geol Series Explan. Notes.

Thom R, Lipple SL and Sanders CC 1977, 'Ravensthorpe Western Australia. Sheet SI/51-5', West Aust Geol Survey 1:250,000 Geol Series Explan. Notes, 41pp.

Tomlinson K and Brown Q 1999, 'The Upper Gairdner catchment report', Jerramungup Landcare Enterprise Centre, Jerramungup.

Twigg LE, Kok NE, Kirkpatrick WE & Burrow G 2001, 'The longevity of 1080 egg-baits in a regularly baited nature reserve in south-western Australia', Wildlife Research, vol. 28, pp.607-618.

V&C Semeniuk Research Group 1998, 'Preliminary Delineation of Consanguineous Wetland Suites between Walpole and Fitzgerald Inlet, Southern Western Australia', Report to Water and Rivers Commission.

van Heurck P & Abbott I 2003, 'Fire and terrestrial invertebrates in south-west Western Australia', In: Fire in ecosystems of south-west Western Australia: Impacts and management. Eds I Abbott & N Burrows, Backhuys Publishers, Leiden, The Netherlands. 2003. pp.291-319.

von der Borch CC 1968, 'Southern Australian submarine canyons: their distribution and ages', Marine Geology, vol. 6, pp.267- 279.

Water and Rivers Commission 2001, 'Bremer River and Devils Creek River Action Plan', Water and Rivers Commission. Water Resource Management Series Report No WRM 25. June 2001.

Water and Rivers Commission 2003, 'State of the Waterways in the Fitzgerald River Catchment', Water and Rivers Commission Water Resource Management Series Report No WRM 36. April 2003.

Watkins D 1985, 'Report of the RAOU Ground Parrot Survey in Western Australia', RAOU Report No 15, August 1985.

Watkins D & Burbidge AH 1992, 'Conservation of the Ground Parrot in Western Australia', In: Issues in the conservation of parrots in Australia and Oceania. L. Joseph (Ed). RAOU Report 83. pp46-49.

Watson J 1991, 'The identification of river foreshore corridors for nature conservation in the South Coast Region of Western Australia.', In: Nature Conservation 2: The role of corridors. DA Saunders and RJ Hobbs (Eds) , pp63-68. Surrey Beatty and Sons, Chipping Norton NSW.

Watson J 1994a, 'Fitzgerald River Foreshore Corridor', Ranger - a Journal for Conservation Managers, vol. 29, 23-25. ANCA Canberra.

Watson J 1994b, 'Marine aspects of the Fitzgerald River National Biosphere Reserve', In "Marine Protected Areas and Biosphere Reserves: Towards a new paradigm". Ed DJ Brunckhorst, ANCA Canberra pp.76-78.

Watson J and Sanders A 1997, 'Fitzgerald River National Park Biosphere Reserve 1978 - 1997: the evolution of integrated protected management areas', Parks, vol. 7, no.1, 9-18.

Watson J and Wilkins P 1999, 'The Western Australian South Coast Macro Corridor Project - a bioregional strategy for nature conservation', Parks, vol. 9, no.3.

Watson J, Lullfitz W, Sanders A, and McQuoid N 1995, 'Networks and the Fitzgerald River National Park Biosphere Reserve, Western Australia', In Nature Conservation 4 - The role of networks. Ed DA Saunders, JL Craig and EM Mattiske, Chap 55 pp 482-487. Surrey Beatty and Sons, Chipping Norton NSW.

Wells FE & Mulvay P 1995, 'Good and bad fishing areas for *Haliotis laevigata*: A comparison of population parameters.', Marine and Freshwater Research, vol. 46, pp.591-598.

Wernberg T, Kendrick GA, & Phillips JC 2003, 'Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia', Diversity and Distributions, vol. 9, pp.427-441.

Western Australian Museum 'Faunabase', <http://www.museum.wa.gov.au/faunabase/prod/index.htm>

Western Australian Museum 'Fauna List', <http://www.museum.wa.gov.au/faunabase/prod/index.htm>

Wetherley S 1998, 'Tectonometamorphic evolution of the Mt Barren Group, Albany-Fraser Province, Western Australia', Thesis (Ph D), University of WA Dept of Geology and Geophysics.

Wetherley S, Harris LB & Ridley JR 1994, 'The tectonic setting of the Mount Barren Group, Albany Fraser Orogen, WA: implications for basin formation and subsequent deformation during a compressional orogen in Eastern Gondwana.', Geological Society of Australia Abstracts No 37. 12th Australian Geological Convention, Perth, September 1994. vol. 37, pp.458 - 459.

Wetherley S & McNaughton NJ 1995, 'New age constraints on amphibolite-facies mineral growth and deformation in metapelites: an example from the Mount Barren Group, Western Australia.', In: ACOG Abstracts, pp 38, Curtin University of Technology.

Wilkins P, Gilfillan S, Watson J & Sanders A (Ed) 2005, 'The Western Australian South Coast Macro Corridor Network - a bioregional strategy for nature conservation (Draft)', Department of Conservation and Land Management (CALM) and South Coast Regional Initiative Planning Team (SCRIPT), Albany WA., pp.39pp, 7 Appendices.

Wilson AF 1958, 'Proxenic granites and related rocks in the Jerramungup- Calyerup Creek area, Western Australia', Journal of the Royal Society of Western Australia, vol. 41, no.2, pp.34-40.

Witkowski ETF, Lamont BB and Connell SJ 1991, 'Seed bank dynamics of three co-occurring *Banksias* in South Coastal Western Australia: the role of plant age, cockatoos, senescence and interfire establishment', Australian Journal of Botany, vol. 39, pp.385-397.

Witkowski ETF, Lamont BB, Walton CS & Radford S 1992, 'Leaf demography, sclerophyllly and ecophysiology of two banksias with contrasting leaf life spans.', Australian Journal of Botany, vol. 40, pp.849-862.

Witt WK 1997, 'Geology of the Ravensthorpe and Cocanarup 1:100,000 sheets', Geological Survey of Western Australia, Explanatory Notes. Perth WA, pp.26pp.

Witt WK 1999, 'The Archaean Ravensthorpe Terrane, Western Australia: synvolcanic Cu - Au mineralization in a deformed island arc complex', Precambrian Research , vol. 96, 143-181.

Woodall GS 2003, 'Platysace tubers', Australian Plants, vol. 21, pp.99-103.

Woodall GS & Robinson CJ 2003, 'Natural diversity of *Santalum spicatum* host species in south-coast river systems and their incorporation into profitable and biodiverse revegetation', Australian Journal of Botany, vol. 51, pp.741-753.

Woodall R 1954, 'Amphibolites and associated Pre-Cambrian rocks of part of the Phillips River Goldfield, Western Australia', Journal of the Royal Society of Western Australia, vol. 39, no.1, pp.1-17.

Wooller RD, Renfree MB, Russell EM, Dunning A, Green SW & Duncan P 1981, 'Seasonal changes in a population of the nectar-feeding marsupial *Tarsipes spencerae* (Marsupialia: Tarsipedidae)', Journal of Zoology London, vol. 195, pp.267-279.

Wooller RD, Richardson KC & Bradley GO 1999, 'Dietary constraints upon reproduction in an obligate pollen- and nectar-feeding marsupial, the honey possum (*Tarsipes rostratus*)', Journal of Zoology London, vol. 248, pp.279-287.

Wooller RD, Richardson KC, Garavanta CAM, Saffer VM, Anthony C & Wooller SJ 1998, 'The influence of annual rainfall upon capture rates of a nectar-dependent marsupial', Wildlife Research, vol. 25, pp.165-169.

Wooller RD, Richardson KC Garavanta CAM, Saffer VM & Bryant KA 2000, 'Opportunistic breeding in the polyandrous honey possum, *Tarsipes rostratus*', Australian Journal of Zoology, vol. 48, pp.669-680.

Wooller RD, Richardson KC, Saffer VM, Garavanta CAM, Bryant KA, Everaardt AN & Wooller SJ 2004, 'The Honey Possum *Tarsipes rostratus*: an update', Chap 26 in "The Biology of Australian Possums and Gliding Possums" eds R Goldingay & S Jackson. pp.312-317. Surrey Beatty & Sons, Chipping Norton.

Wooller RD, Russell EM, Renfree MB & Towers PA 1983, 'A comparison of seasonal changes in the pollen loads of nectarivorous marsupials and birds', Australian Wildlife Research, vol. 10, pp.311-317.

Wooller RD & Wooller SJ 2003, 'The role of non-flying animals in the pollination of *Banksia nutans*', Australian Journal of Botany, vol. 51, pp.503-507.

Wooller SJ & Wooller RD 2001, 'Seed set in two sympatric banksias, *Banksia attenuata* and *B. baxteri*', Australian Journal of Botany, vol. 49, pp.597-602.

Wooller SJ & Wooller RD 2002, 'Mixed mating in *Banksia media*', Australian Journal of Botany, vol. 50, pp.627-631.

Wooller SJ & Wooller RD 2004, 'Seed viability in relation to pollinator availability in *Banksia baxteri*', Australian Journal of Botany, vol. 52, pp.195-199.

Wooller SJ, Wooller RD & Brown KL 2002, 'Regeneration by three species of *Banksia* on the south coast of Western Australia in relation to fire interval', Australian Journal of Botany, vol. 50, pp.311-317.

Woolley P 1977, 'In search of the Dibbler, *Antechinus apicalis* (Marsupialia: Dasyuridae)', Journal Proceedings of the Royal Society of Western Australia, vol. 59, pp.111-117.

Woolley P 1980, 'Further searches for the Dibbler *Antechinus apicalis* (Marsupialia Dasyuridae)', Journal Proceedings of the Royal Society of Western Australia, vol. 63, pp.47-52.

Young GC & Potter IC 2002, 'Influence of exceptionally high salinities, marked variations in freshwater discharge and opening of estuary mouth on the characteristics of the Ichthyofauna of a normally-closed estuary', Estuarine, Coastal and Shelf Science, vol. 55, pp.223-246.